.. highlight:: none Full Diagonalization method =========================== Overview -------- We generate the matrix of :math:`\hat{\mathcal H }` by using the real space configuration :math:`| \psi_j \rangle`\(:math:`j=1\cdots d_{\rm H}`, where :math:`d_{\rm H}` is the dimension of the Hilbert space): :math:`{\mathcal H }_{ij}= \langle \psi_i | \hat {\mathcal H } | \psi_j \rangle`. By diagonalizing this matrix, we can obtain all the eigenvalues :math:`E_{i}` and eigenvectors :math:`|\Phi_i\rangle` (:math:`i=1 \cdots d_{\rm H}`). In the diagonalization, we use a LAPACK routine, such as ``dsyev`` or ``zheev``. We also calculate and output the expectation values :math:`A_i \equiv \langle \Phi_i | {\hat A} | \Phi_i\rangle`. These values are used for the finite-temperature calculations. Finite-temperature calculations ------------------------------- From :math:`A_i \equiv \langle \Phi_i | {\hat A} | \Phi_i\rangle`, we calculate the finite-temperature properties by using the relation .. math:: \langle {\hat A}\rangle=\frac{\sum_{i=1}^N A_i {\rm e}^{-\beta E_i}}{\sum_{i=1}^N{\rm e}^{-\beta E_i}}. The calculation should be performed by using the own postscripts.