.. highlight:: none Parameters for time-evolution ----------------------------- * ``dt`` **Type :** Positive Double(Default value : ``0.1``) **Description :** The width of time steps. * ``PumpType`` **Type :** String (Chosen from ``"Quench"``, ``"Pulse Laser"``, ``"AC Laser"``, and ``"DC Laser"``.Default value : ``"Quench"``) **Description :** The type of time-dependent Hamiltonian. For ``"Quench"``, two body operator :math:`U_{\rm quench} \sum_i n_{i \uparrow} n_{i \downarrow}` is added. For ``"Pulse Laser"``, ``"AC Laser"``, and ``"DC Laser"``, the hopping term is modulated as :math:`-\sum_{i j \sigma} t_{i j} \exp[-{\bf A}(t) \cdot ({\bf R}_i-{\bf R}_j)/(2\pi)] c^\dagger_{i \sigma} c_{j \sigma}`, where :math:`{\bf A}(t)` is the vector potential which is defined as :math:`{\bf A}(t) = {\bf A}_0 \exp[-(t-t_0)^2/(2 t_{\rm dump}^2)] \cos[\omega (t-t_0)]`, :math:`{\bf A}(t) = {\bf A}_0 \sin[\omega (t-t_0)]`, and :math:`{\bf A}(t) = {\bf A}_0 t` for for ``"Pulse Laser"``, ``"AC Laser"``, and ``"DC Laser"``, respectively. ``potential.dat`` file is written for displaying the vector potential and the electrical field at each time step. * ``Uquench`` **Type :** Double(Default value : ``0.0``) **Description :** :math:`U_{\rm quench}` * ``freq`` **Type :** Double(Default value : ``0.1``) **Description :** :math:`\omega` * ``tshift`` **Type :** Double(Default value : ``0.0``) **Description :** :math:`t_0` * ``tdump`` **Type :** Double (Default value : ``0.1``) **Description :** :math:`t_{\rm dump}` * ``VecPotW``, ``VecPotL`` **Type :** Double (Default value : ``0.0``) **Description :** The vector potential (fractional coordinate of the reciprocal space) at :math:`t=t_0`. The reciprocal lattice vector is computed from the direct lattice vector shown in :numref:`fig_chap04_1_lattice` , :numref:`fig_chap04_1_honeycomb` , :numref:`fig_kagome`, :numref:`fig_ladder` . .. raw:: latex \newpage