Overview ======== In this document, we introduce how we compute downfolded models with mVMC or :math:`{\mathcal H}\Phi` in conjunction to `RESPACK `_. In RESPACK, the screened direct integrals :math:`U_{mn}({\bf R},\omega)` and the screened exchanged integrals :math:`J_{mn}({\bf R},\omega)` are given as follows: .. math:: \begin{aligned} U_{mn}({\bf R},\omega)&=&\int_V d{\bf r} \int_V d{\bf r'} w_{m{\bf 0}}^*({\bf r}) w_{m{\bf 0}}({\bf r}) W({\bf r,r'},\omega) w_{n{\bf R}}^*({\bf r'}) w_{n{\bf R}}({\bf r'}),\nonumber\\ J_{mn}({\bf R},\omega)&=&\int_V d{\bf r}\int_V d{\bf r'} w_{m{\bf 0}}^*({\bf r}) w_{n{\bf R}}({\bf r}) W({\bf r,r'},\omega) w_{n{\bf R}}^*({\bf r'}) w_{m{\bf 0}}({\bf r'}). \end{aligned} Here, :math:`V` is the volume of the crystal, :math:`w_ {i {\bf R}}({\bf r})` is the :math:`i` -th wannier function at :math:`\bf R` -th cell, :math:`W({\bf r,r'}, \omega)` is the screened Coulomb interactions, respectively. In the following, the components at :math:`\omega=0` are only considered. Then, the Hamiltonian of the two-body interactions are given as follows: .. math:: \begin{aligned} {\cal H}_{\rm int} &= \frac{1}{2}\sum_{\sigma\rho }\sum_{ij}\sum_{nm} \Bigl[ U_{mn}({\bf R}_{ij})c_{im, \sigma}^{\dagger}c_{jn, \rho}^{\dagger}c_{jn, \rho}c_{im, \sigma}\nonumber\\ &+ J_{mn}({\bf R}_{ij})(c_{im, \sigma}^{\dagger}c_{jn,\rho}^{\dagger}c_{im,\rho}c_{jn,\sigma} + c_{im, \sigma}^{\dagger}c_{im,\rho}^{\dagger}c_{jn,\rho}c_{jn,\sigma} )\Bigr], \end{aligned} where :math:`{\bf R}_{ij} \equiv {\bf R}_i-{\bf R}_j` . Since mVMC and :math:`{\mathcal H}\Phi` cannot directly treat the following type of interactions :math:`{c_{i, \sigma}^{\dagger}c_{j, \rho}^{\dagger}c_{k, \rho'}c_{l, \sigma'}}` , the Hamiltonian must be rewritten as follows: .. math:: \begin{aligned} {\cal H}_{\rm int} &= \sum_{i,m} U_{mm}({\bf 0})n_{im,\uparrow} n_{im, \downarrow} +\sum_{(i,m)<(j,n)}U_{mn}({\bf R}_{ij})n_{im}n_{jn}\nonumber\\ & - \sum_{(i,m)<(j,n)}J_{mn}({\bf R}_{ij})(n_{im, \uparrow}n_{jn,\uparrow}+n_{im, \downarrow}n_{jn,\downarrow}) \nonumber\\ & + \sum_{(i,m)<(j,n)}J_{mn}({\bf R}_{ij})(c_{im, \uparrow}^{\dagger}c_{jn,\downarrow}^{\dagger}c_{im,\downarrow}c_{jn,\uparrow}+{\rm h.c.}) \nonumber\\ & + \sum_{(i,m)<(j,n)}J_{mn}({\bf R}_{ij}) (c_{im, \uparrow}^{\dagger}c_{im,\downarrow}^{\dagger}c_{jn,\downarrow}c_{jn,\uparrow} + {\rm h.c.} ). \end{aligned} The lattice model is defined by the following Hamiltonian: .. math:: \begin{aligned} {\cal H} &= \sum_{m,n, i, j,\sigma} \left[t_{mn}({\bf R}_{ij}) - t_{mn}^{\rm DC}({\bf R}_{ij})\right] c_{im \sigma}^{\dagger} c_{jn \sigma} + {\cal H}_{int}, \end{aligned} where :math:`t_{mn}^{\rm DC}({\bf R}_{ij})` is the one-body correction term given as: .. math:: \begin{aligned} t_{mm}^{\rm DC}({\bf 0}) &\equiv \alpha U_{mm}({\bf 0}) D_{mm}({\bf 0}) + \sum_{({\bf R}, n) \neq ({\bf 0}, m)} U_{m n} ({\bf R})D_{nn}({\bf 0})\\ & - (1-\alpha) \sum_{({\bf R}, n) \neq ({\bf 0}, 0)} J_{m n}({\bf R}) D_{nn}({\bf R}),\\ t_{mn}^{\rm DC}({\bf R}_{ij}) &\equiv \frac{1}{2} J_{mn}({\bf R}_{ij}) \left(D_{nm}({\bf R}_{ji}) + 2 {\rm Re} [D_{nm}({\bf R}_{ji})]\right)\\ &-\frac{1}{2} U_{mn}({\bf R}_{ij}) D_{nm}({\bf R}_{ji}), \quad ({\bf R}_{ij}, m) \neq ({\bf 0}, n), \\ D_{mn}({\bf R}_{ij}) &\equiv \sum_{\sigma} \left\langle c_{im \sigma}^{\dagger} c_{jn \sigma}\right\rangle_{\rm KS}, \end{aligned} Here, :math:`t_{mm}^{\rm DC}({\bf 0})` is the term to correct the chemical potntial, :math:`t_{mn}^{\rm DC}({\bf R}_{ij})` is term to correct transfer integrals . These terms are introduced to avoid double counting in analyzing the lattice model. To adopt theses corrections or not can be selected by the option ``doublecounting`` in the input file. The strength of :math:`U_{Rij}` and :math:`J_{Rij}` can be controled by multiplying tuning parameters :math:`\lambda_U, \lambda_J`. For details, see ``Input parameters for Standard mode``. Prerequisite ------------ We compute the Kohn-Sham orbitals with `QuantumESPRESSO `_ or `xTAPP `_, and obtain the Wannier function, the dielectric function, the effective interaction with RESPACK, and simulate quantum lattice models with mVMC or :math:`{\mathcal H}\Phi`. Therefore, these programs must be available in our machine.