4.2.2. CalcMod file¶
This file determines the parameters for the calculation method, model, and output mode. The file format is as follows.
CalcType 0
CalcModel 2
CalcEigenVec 0
File format¶
[string01] [int01]
Parameters¶
[string01]
Type : String
Description : Select a word from keywords.
[int01]
Type : Int
Description : A parameter that is correlated with a keyword.
Use rules¶
After setting the keywords at [string 01], a half-width blank is needed for setting a parameter.
Keywords can be set in random order.
If the keywords or filenames are incorrect, the program is terminated.
The keywords “CalcType” and “CalcModel” are essential.
When a head of line is "#”, the line is skipped.
Keywords and parameters¶
The parameters correlated with the keywords are as follows.
CalcType
Type : Int
Description : Select the method for calculation from the following list:0: Lanczos method1: mTPQ method2: Full diagonalization method3: LOBCG for the ground state4: Time-evolution5: cTPQ methodCalcModel
Type : Int
Description : Select the model from the following list:0: Fermion Hubbard model (canonical ensemble: conservation of particles or conservation of particles and the component of \(S_z\))1: Spin model (canonical ensemble: conservation of the component of \(S_z\))2: Kondo lattice model (canonical ensemble: conservation of particles, the component of \(S_z\))3: Fermion Hubbard model (grand canonical ensemble)4: Spin model (grand canonical ensemble)5: Kondo lattice model (grand canonical ensemble).For the fermion Hubbard model, you can select the model under the conservation of the particles by setting
NCond
in the ModPara file. When you want to select the model under the conservation of particles and the component of \(S_z\), set bothNCond
and2Sz
in the ModPara file.CalcEigenVec
Type : Int (default value: 0)
Description : Select the method to calculate the eigenvectors:0: Lanczos+CG methods (when the convergence of eigenvectors is not sufficient for using the Lanczos method, the CG method is applied to calculate eigenvectors).1: Lanczos method.InitialVecType
Type : Int (default value: 0)
Description : Select the type of an initial vector (\(v0\)):-1: Real part (\({\rm Re}[v0]]\)) and imaginary part (\({\rm Re}[v0]]\)) of the initial vector are give as the normally distributed random numbers. Thus, the normalized initial vectors are uniformly distributed on the \(N_{\rm H}\) dimensional super sphere (\(N_{\rm H}\) is the dimension of the Hilbert space).0: Complex type (\({\rm Re}[v0]\in[-1:1]\), \({\rm Im}[v0]\in[-1:1]\) ).1: Real type (\({\rm Re}[v0]\in[-1:1]\), \({\rm Im}[v0]=0\)).OutputEigenVec
Type : Int (default value: 0)
Description : Select the mode of outputting an eigenvector:0: Not output an eigenvector1: Output an eigenvector.InputEigenVec
Type : Int (default value: 0)
Description : Select the mode of inputting an eigenvector:0: Not input an eigenvector1: Input an eigenvector.ReStart
Type : Int (default value: 0)
Description : Select the mode of inputting a restart vector:0: Not restart calculation1: Output a restart vector2: Input a restart vector and output a new restart vector3: Input a restart vector.CalcSpec
Type : Int (default value: 0)
Description : Select the mode of calculating dynamical Green’s functions:0: Not calculate dynamical Green’s functions1: (not restart) Input an initial vector and files for generating single excited or pair excited states2: Input components of triangular diagonal matrix3: Output both components of triangular diagonal matrix and a restart vector4: Input both components of triangular diagonal matrix and a restart vector5: Input and output both components of triangular diagonal matrix and a restart vector.OutputHam
Type : Int (default value: 0)
Description : Full Diag)Select the mode of outputting Hamiltonian:0: not output Hamiltonian.1: output Hamiltonian.InputHam
Type : Int (default value: 0)
Description : (Full Diag)Select the mode of inputting Hamiltonian:0: not input Hamiltonian.1: input Hamiltonian.OutputExcitedVec
Type : Int (default value: 0)
Description : Select the mode of outputting an excited vector:0: Not output an eigenvector1: Output an eigenvector.Scalapack
Type : Int (default value: 0)
Description : (Full Diag)Select to use ScaLAPACK library for full diagonalization:0: not to use ScaLAPACK.1: use ScaLAPACK.NGPU
Type : Int (default value: 2)
Description : (Full Diag)Select the number of GPU devices for full diagonalization:\({\mathcal H} \Phi\) does not support to use GPU devices at multi-nodes.