
HΦの演習問題 (問題)

好きなものからやって下さい 
ほとんどlaptop PCでできるはずです(TPQはちょっと重いですが…) 
もちろん、自分のやりたい別の課題もやっても OKです 
(スパコンでプロセス数依存性を見てみるなど)

三澤  貴宏、吉見一慶   
東京大学物性研究所 特任研究員（PCoMS PI）

例題1: spin 1/2 dimer (fulldiag) 
例題2: spin 1/2 chain (Lanczos+LOBCG+Spectrum) 
例題3: J1-J2 Heisenberg model(Lanczos,TPQ) 
例題4: Kitaev model (Lanczos,TPQ) 
例題5: Hubbard chain (Lanczos,TPQ) 
例題6: Kitaev model (LOBCG, for parallel computer)



例題1: Heisenberg dimer, Hubbard dimer

1. 全対角化でエネルギー固有値を求めましょう。 
Emin=-3/4(1重), Emax=1/4(３重縮退) となるはず 

2. S=1,2/3,2 …として同じことをやりましょう 
Emin=-S(S+1), Emax=S2 となるはず 

3.Hubbard 模型でも同じことをやってみましょう 
(half filling , Sz=0) 

4. Lanczos法, LOBCG法で計算してみましょう

H = J ~S0
~S1

H = �t(c†0�c1� + h.c.) + U(n0"n0# + n1"n1#)

E = 0, U,
U

2
⇥ (1±

p
1 + (4t/U)2)



例題2: Heisenberg chain
H = J

X

hi,ji

SiSj

1. Lanczosでエネルギーを計算 (サイズL= 20位まで) 
→基底状態と第一励起状態のエネルギー差(ギャップ)を計算 
→ギャップの大きさを1/Lでプロットしてみましょう 

2.高磁場をかけてLanczos、LOBCGで計算してみましょう 

3.S=1のハイゼンベルク模型でも同じことをやってみましょう 
(Haldane gap) 

4. (発展)S(q,omega)を計算してみましょう。



例題3: J1-J2ハイゼンベルク模型

lattice.gpで描画可能

H = J1
X

hi,ji

SiSj + J2
X

hhi,jii

SiSj
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最近接 J1,次近接J2

J2/J1~0.5で非磁性の 
基底状態(スピン液体?)

HONG-CHEN JIANG, HONG YAO, AND LEON BALENTS PHYSICAL REVIEW B 86, 024424 (2012)

Most of the literature on the intermediate phase of the J1-J2
model has focused on the possibility of symmetry breaking
VBS order. Many of these prior studied have suggested that
the intermediate state has VBS order. We note, however,
that all numerical results for the J1-J2 model are based
either on biased techniques (such as series expansion or
coupled cluster methods, or fixed node or related versions
of Monte Carlo adapted to avoid the sign problem, which
is present for unbiased Monte Carlo in this system), or on
exact diagonalization of very small systems. Some theoretical
motivation for the possibility of VBS order comes from the
theory of deconfined quantum criticality,28 which predicts
that a continuous quantum phase transition—a deconfined
quantum critical point (DQCP)—should occur between an
ordered Neél state and a plaquette or columnar VBS state,
in some models. However, the existence of such a transition
does not in any way imply that it occurs for the J1-J2 model in
question, or that this particular model even harbors a VBS
phase. Other theoretical motivation for VBS order comes
from its presence in some large-N generalizations of the
nearest-neighbor Heisenberg antiferromagnet. However, these
large N studies are not controllably close to the SU(2) case
and, moreover, do not consider second-neighbor interactions.
In short, we believe there is very little compelling evidence
for the existence of VBS order in the isotropic S = 1/2 J1-J2
model to be found in the prior literature. We will return to
discuss VBS states in Sec. VI A.

The only unbiased technique capable of treating generic
frustrated two-dimensional spin systems of moderately large
size is the density matrix renormalization group (DMRG)
method.7,29–31 While the sizes that can be studied using the
DMRG are not as large as those accessibly by quantum
Monte Carlo (QMC) for unfrustrated models, they are still
very large and they are not limited by the sign problem,
which prevents application of QMC to most realistic physical
models. Moreover, the DMRG has some advantages over
QMC: it is intrinsically a zero-temperature technique, and
obtains a convenient representation of the ground-state wave
function. Most importantly for our purposes, the DMRG is
very efficient and convenient for calculating the entanglement
entropy, which we return to in some detail below. In this
paper, we report the results of extensive simulations (with
truncation error ∼10−7) on numerous cylinders of circumfer-
ence Ly = 3–14 and lengths Lx ! 2Ly . In our simulations, we
measure spin-spin correlation functions, correlation functions
and expectation values of VBS order parameters, bulk singlet
and triplet energy gaps, and entanglement entropy. All results
confirm the existence of magnetic order for small and large J2,
and that (see Fig. 1) the ground state for 0.41 " J2/J1 " 0.62
is nonmagnetic, in very good agreement with the most accurate
prior results from series expansion and coupled cluster24

methods. Furthermore, we find that the intermediate phase
has a gap to both singlet and triplet excitations and, within our
uncertainty, no VBS order in the 2D limit as extrapolated from
the VBS correlation functions. We carry out further checks for
possible finite-size effects due to the boundaries, to see if this
might artificially suppress VBS order, and see no indication
that this is the case.

The latter results suggests a QSL state, based on negative
evidence: the apparent absence of VBS order. We find two
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FIG. 1. (Color online) The ground-state phase diagram for the
spin- 1

2 AFM Heisenberg J1-J2 model on the square lattice, as
determined by accurate DMRG calculations on long cylinders with
Ly up to 14. Changing the coupling parameter J2/J1, three different
phases are found: Néel antiferromagnet (AFM), topological quantum
spin liquid (QSL), and stripe AFM phase. ms(k0 = (π,π )) [ms(kx =
(π,0))] denotes the staggered magnetization in the Néel AFM phase
[stripe AFM phase], whose saturation value is 1/2. "S and "T denote
the spin singlet and spin triplet gaps, respectively.

positive evidences that this suggestion is correct, and that the
state is a Z2 QSL. First, we find a nonzero TEE, γ , which
is a constant and universal reduction of the von Neumann
entanglement entropy, known to vanish in any gapped state
with short-range entanglement. Notably, we point out in
Sec. IV that discrete spontaneous symmetry breaking phases
such as valence bond solids have absolute ground states, which
are Schrödinger cat states with a constant enhancement of
the entanglement entropy, i.e., an effect of opposite sign to
the TEE. Phases with nonzero γ and a gap to all excitations
are topological phases. Like conformal field theories in two
dimensions, only discrete types of topological phases exist,
with discrete allowed values of γ (which plays a role somewhat
similar to the central charge in a conformal field theory). For
all points we have studied within the nonmagnetic phase, the
value of γ is equal, within numerical uncertainty of 2%,
to ln(2), which is the minimal value possible for γ in a
topological phase with time-reversal symmetry. A topological
entanglement entropy of γ = ln(2) implies either a Z2 QSL
or a “doubled semion” phase. As there is, to our knowledge,
no theory suggesting the appearance of the semion phase in
an SU(2) invariant spin-1/2 model, we take this as strong
evidence for a Z2 QSL state. The second positive evidence for
a Z2 QSL is a remarkable odd/even effect in which static VBS
order is entirely absent for even Ly but is observed directly
in the VBS expectation values for odd Ly . This is expected
on general theoretical grounds for a Z2 QSL, as we show
in Appendix 1. We compare the behavior of the numerically
observed static VBS order for odd circumference cylinders
with theory, and find quite consistent results.

The remainder of the paper is organized as follows. In
Sec. II, we report results of magnetic and dimer correlation
functions and their extrapolation to the infinite system limit.
Section III discusses the singlet and triplet energy gaps.
Section IV describes the theory and measurements of the
topological entanglement entropy, and Sec. V presents results
on the even-odd effect. We conclude in Sec. VI with a summary
of the conclusions, and a detailed discussion of the reasons to

024424-2
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例題3: J1-J2ハイゼンベルク模型
H = J1

X

hi,ji

SiSj + J2
X

hhi,jii

SiSj

1. Lanczosでエネルギーを計算 (サイズ4×4位) 
2. TPQで比熱を計算(J2/J1~0.5でどうなるか？) 
3. (発展)余裕があればスピン相関も計算してみましょう

L = 4 
W = 4 
model = "Spin" 
method = "Lanczos" 
lattice = "square lattice" 
J = 2.0 
J’ = 1.0 
2Sz = 0



例題4: Kitaev model

1
00

1
0

5 1
20

13

1

6

04 0 2
15 1 3

0

12

0

6

1

13

1

7

0

10

0

14

1

11

1

15

3
22

3
2

1 3
42

15

3

8

20 2 4
31 3 5

2

14

2

8

3

15

3

9

2

6

2

16

3

7

3

17

5
44

5
4

3 5
04

17

5

10

42 4 0
53 5 1

4

16

4

10

5

17

5

11

4

8

4

12

5

9

5

13

7
66

7
6

11 7
86

1

7

12

610 6 8
711 7 9

6

0

6

12

7

1

7

13

6

16

6

2

7

17

7

3

9
88

9
8

7 9
108

3

9

14

86 8 10
97 9 11

8

2

8

14

9

3

9

15

8

12

8

4

9

13

9

5

11
1010

11
10

9 11
610

5

11

16

108 10 6
119 11 7

10

4

10

16

11

5

11

17

10

14

10

0

11

15

11

1

13
1212

13
12

17 13
1412

7

13

0

1216 12 14
1317 13 15

12

6

12

0

13

7

13

1

12

4

12

8

13

5

13

9

15
1414

15
14

13 15
1614

9

15

2

1412 14 16
1513 15 17

14

8

14

2

15

9

15

3

14

0

14

10

15

1

15

11

17
1616

17
16

15 17
1216

11

17

4

1614 16 12
1715 17 13

16

10

16

4

17

11

17

5

16

2

16

6

17

3

17

7

is impossible, even if we introduce new terms in the Hamiltonian. On the other hand, the
eight copies of each phase (corresponding to different sign combinations of Jx,Jy,Jz) have
the same translational properties. It is unknown whether the eight copies of the gapless
phase are algebraically different.

We now consider the zeros of the spectrum that exist in the gapless phase. The momen-
tum q is defined modulo the reciprocal lattice, i.e., it belongs to a torus. We represent the
momentum space by the parallelogram spanned by (q1,q2)—the basis dual to (n1,n2). In
the symmetric case (Jx = Jy = Jz) the zeros of the spectrum are given by

ð34Þ

If |Jx| and |Jy| decrease while |Jz| remains constant, q* and #q* move toward each other
(within the parallelogram) until they fuse and disappear. This happens when
|Jx| + |Jy| = |Jz|. The points q* and #q* can also effectively fuse at opposite sides of the par-
allelogram. (Note that the equation q* = #q* has three nonzero solutions on the torus.)

At the points ±q* the spectrum has conic singularities (assuming that q* „ #q*)

ð35Þ

7. Properties of the gapped phases

In a gapped phase, spin correlations decay exponentially with distance, therefore spa-
tially separated quasiparticles cannot interact directly. That is, a small displacement or
another local action on one particle does not influence the other. However, the particles

Jx Jz= =0Jy Jz= =0

=1,Jx =1,Jy

=1,Jz Jx Jy= =0

gapless

gappedAz

Ax Ay

B

Fig. 5. Phase diagram of the model. The triangle is the section of the positive octant (Jx, Jy, Jz P 0) by the plane
Jx + Jy + Jz = 1. The diagrams for the other octants are similar.

20 A. Kitaev / Annals of Physics 321 (2006) 2–111

Annals of Physics 321, 2-111 (2016)

3方向のそれぞれが
Jx,Jy,Jzで相互作用 相図

可解模型→スピン液体
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lattice.gpで描画可能



例題4: Kitaev model

1. Lanczosでエネルギーを計算 (サイズ18サイト位) 
2. TPQで比熱を計算: マヨラナ粒子の兆候がみえるか？ 
3. (発展)次近接のスピン相関が厳密に0を確認 
4. (発展)ハイゼンベルク項をたすとどうなるか？ 
5. (発展)磁場をかけて磁化の温度依存性から帯磁率が計算可能

W = 3 
L = 3 
model = "SpinGC" 
method = "Lanczos" 
lattice = "Honeycomb" 
J0x = -1.0 
J0y =  0.0 
J0z =  0.0 
J1x =  0.0 
J1y = -1.0 
J1z =  0.0 
J2x =  0.0 
J2y =  0.0 
J2z = -1.0
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例題5: Hubbard chain 

H = �t
X

hi,ji

(c†i�cj� + h.c.) + U
X

i

ni"ni#

L = 8 
model = "FermionHubbard" 
method = "Lanczos" 
lattice = "chain" 
t = 1.0 
U = 8.0 
nelec = 8 
2Sz = 0

1. Lanczosでエネルギー・二重占有度を計算 (サイズ8サイト位) 
2. TPQで比熱・二重占有度を計算:  
3. (発展)　全対角化でアンサンブル平均を計算してTPQと比較



例題6: 並列計算によるキタエフ模型 

並列計算機を使って基底状態の縮退度を求めてみましょう。 
1. 24サイト(a0w = 2, a0l = 2, a1w = 4, a1l = -2)の基底状態の 
縮退度をCG計算で求めてみましょう。 
2. (i18では難しいです) 32サイト(W=4, L=4)の縮退度は？ 

ヒント: 基底状態から4つ目まで(exct=4)の固有値をmethod=“CG” 
で計算してみて下さい。
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