Output-file format¶
The output files generated by each program are summarized in the table below:
Program |
Output |
Reference |
---|---|---|
|
seedname.h5 |
|
|
seedname.out.h5 |
|
seedname_sigma_iw.npz |
||
work/imp_shell#_iter#/solver_dependent_output |
||
|
check/iter_mu.dat |
|
check/iter_mu.png |
||
check/iter_sigma-ish0.dat |
||
check/iter_sigma-ish0.png |
||
check/iter_occup-ish0.dat |
||
check/iter_occup-ish0.png |
||
check/iter_spin-ish0.dat |
||
check/iter_spin-ish0.png |
||
check/sigma.dat |
||
check/sigma_ave.png |
||
|
post/sigma_w.npz |
|
post/sigma_w.npz |
||
|
post/dos.dat |
|
post/akw.dat |
||
post/akw.gp |
||
post/momdist.dat |
Files that have empty Reference in this table are explained in the following.
dcore_pre
¶
seedname.h5
It has two groups,
dft_input
andDcore
. See DFTTools for the details of the data structure indft_input
group. The data included inDcore
group is list below:Name
Type
Description
Umat
numpy.complex
The values of \(U^i_{\alpha\beta\gamma\delta}\), where \(i\) corresponds to the kind of correlated shell and \(\alpha, \beta, \gamma, \delta\) denote the spin-orbital indices at each correlated shell.
LocalPotential
numpy.complex
The values of \(V^i_{s, o1, o2}\), where \(s\) denotes the spin, and \(o1, o2\) denote orbitals. If SO coupling is considered, the spin is included in the orbital indices.
dcore
¶
seedname.out.h5
All data are stored in
dmft_out
group. The following list summarizes data structure in thedmft_out
group: See File format for Green’s function and self-energy for the data structure of the Green’s function and self-energy.Name
Type
Description
iterations
Int
The total number of iteration steps.
Sigma_iw
Group
The local self-energy in imaginary-frequency domain at each iteration step.
chemical_potential
Group
The chemical potential at each iteration step.
dc_energ
Group
The double-counting corrections to the energy at each iteration step.
dc_imp
Group
The double-counting self-energy term at each iteration step.
parameters
Group
All input parameters read from ini file.
The latest data list can be obtained by
h5ls
command.h5ls [seedname].out.h5/dmft_out
solver_dependent_output
All solver-dependent output are stored in the working directory such as work/imp_shell#_iter# (#’s are replaced with numbers). See Impurity solvers for details.
dcore_check
¶
check/iter_mu.dat
The chemical potential as a function of the iteration number. This is the data corresponding to the figure iter_mu.png (see Convergence-check : dcore_check).
1 0.0000000000e+00 2 1.4197880094e-01 3 4.6478279315e-01 4 6.3732253182e-01 5 6.4637277925e-01 6 6.8031573871e-01 7 7.0882955968e-01
check/iter_sigma-ish0.dat
The renormalization factor as a function of the iteration number. This is the data corresponding to the figure iter_sigma-ish0.png (see Convergence-check : dcore_check).
1 0.6674359500130874 0.6674359500130874 2 0.5208316972639336 0.5208316972639336 3 0.31558993009526837 0.31558993009526837 4 0.17496815990309889 0.17496815990309889 5 0.13950821208253136 0.13950821208253136 6 0.11496910148099888 0.11496910148099888 7 0.09665012984893595 0.09665012984893595
check/iter_occup-ish0.dat
The spin- and orbital-dependent occupation numbers as a function of the iteration number. This is the data corresponding to the figure iter_occup-ish0.png (see Convergence-check : dcore_check).
Todo
numerical data
check/iter_spin-ish0.dat
The spin moments as a function of the iteration number. This is the data corresponding to the figure iter_spin-ish0.png (see Convergence-check : dcore_check).
Todo
numerical data
check/sigma.dat
The local self energy at the final step.
# Local self energy at imaginary frequency # [Column] Data # [1] Frequency # [2] Re(Sigma_{shell=0, spin=up, 0, 0}) # [3] Im(Sigma_{shell=0, spin=up, 0, 0}) # [4] Re(Sigma_{shell=0, spin=down, 0, 0}) # [5] Im(Sigma_{shell=0, spin=down, 0, 0}) -157.001093 0.994751 0.006358 0.994751 0.006358 -156.844013 0.994751 0.006365 0.994751 0.006365 -156.686934 0.994751 0.006371 0.994751 0.006371 :
dcore_spectrum
¶
post/dos.dat
The k-integrated single-particle excitation spectrum \(A(\omega)\) (density of states).
# [1] Energy # [2] Total DOS of spin up # [3] Total DOS of spin down # [4] PDOS of shell0,spin up,band0 # [5] PDOS of shell0,spin down,band0 -5.000000 0.010048 0.010048 0.010048 0.010048 -4.972431 0.010299 0.010299 0.010299 0.010299 -4.944862 0.010562 0.010562 0.010562 0.010562 -4.917293 0.010837 0.010837 0.010837 0.010837 -4.889724 0.011126 0.011126 0.011126 0.011126 :
post/akw.dat
The single-particle excitation spectrum \(A(\boldsymbol{k}, \omega)\) on the given k-path. See Spectral functions : dcore_spectrum for how to plot this data.
0.000000 -5.000000 0.092677 0.000000 -4.972431 0.097063 0.000000 -4.944862 0.101755 0.000000 -4.917293 0.106779 0.000000 -4.889724 0.112165 0.000000 -4.862155 0.117947 0.000000 -4.834586 0.124162 0.000000 -4.807018 0.130850 0.000000 -4.779449 0.138058 0.000000 -4.751880 0.145834 :
post/momdist.dat
The momentum distribution function.
# Momentum distribution # [Column] Data # [1] Distance along k-path # [2] Re(MomDist_{spin=up, 0, 0}) # [3] Im(MomDist_{spin=up, 0, 0}) # [4] Re(MomDist_{spin=down, 0, 0}) # [5] Im(MomDist_{spin=down, 0, 0}) 0.000000 0.948389 -0.000000 0.948389 -0.000000 0.005000 0.948368 -0.000000 0.948368 -0.000000 0.010000 0.948303 -0.000000 0.948303 -0.000000 :