slater_basis
parameter¶
The basis for the Slater interactions can be specified by slater_basis
parameter. The format is slater_basis=[(basis, order), (basis, order),]
. One needs to specify basis and order for each inequivalent shell as in slater_f
and slater_uj
parameters. The details of basis and order are described below.
basis
'cubic'
: cubic harmonics (default)'spherical'
: spherical harmonics in L-S basis'spherical_j'
: spherical harmonics in J-Jz basis
order
The order of basis is specified by index numbers.
The basis can be truncted if the number of indices is fewer than 2*l+1
Special word such as ‘eg’ and ‘t2g’ can be used.
If not specified, all bases are used in the default order
Examples¶
General examples:
slater_basis = [('spherical',), ('spherical', 4, 3, 2, 1, 0), ('spherical', 2, 1, 0)]
slater_basis = [('cubic',), ('cubic', 2, 4), ('cubic', 1, 0, 2)]
slater_basis = [('cubic',), ('cubic', 'eg'), ('cubic', 1, 0, 2)] # Equivalent
slater_basis = [('spherical_j',), ('spherical_j',), ('spherical',)]
slater_basis = 'cubic' # Default
slater_basis = [('cubic',), ('cubic',), ('cubic',)] # Equivalent
More specific examples are shown below.
cubic harmonics for p orbitals¶
[model]
norb = 3
interaction = slater_uj
slater_uj = [(1, 4.0, 0.9)]
slater_basis = 'cubic'
Output of dcore_pre
:
Generating U-matrix
slater_uj = [(1, 4.0, 0.9)]
slater_basis(basis) = ['cubic']
slater_basis(order) = [None]
Slater interactions
ish = 0
| l = 1
| F_2m = [4. 4.5]
| basis/sp = ['x' 'y' 'z']
|
| in SO rep (after transformed, reordered, or truncated)
| basis(up) = ['x' 'y' 'z']
| basis(dn) = ['x' 'y' 'z']
cubic harmonics for d orbitals¶
[model]
norb = 5
interaction = slater_uj
slater_uj = [(2, 4.0, 0.9)]
slater_basis = 'cubic'
Output of dcore_pre
:
Generating U-matrix
slater_uj = [(2, 4.0, 0.9)]
slater_basis(basis) = ['cubic']
slater_basis(order) = [None]
Slater interactions
ish = 0
| l = 2
| F_2m = [4. 7.73006135 4.86993865]
| basis/sp = ['xy' 'yz' 'z^2' 'xz' 'x^2-y^2']
|
| in SO rep (after transformed, reordered, or truncated)
| basis(up) = ['xy' 'yz' 'z^2' 'xz' 'x^2-y^2']
| basis(dn) = ['xy' 'yz' 'z^2' 'xz' 'x^2-y^2']
cubic harmonics for f orbitals¶
[model]
norb = 7
interaction = slater_uj
slater_uj = [(3, 4.0, 0.9)]
slater_basis = 'cubic'
Output of dcore_pre
:
Generating U-matrix
slater_uj = [(3, 4.0, 0.9)]
slater_basis(basis) = ['cubic']
slater_basis(order) = [None]
Slater interactions
ish = 0
| l = 3
| F_2m = [ 4. 10.72759974 7.1676259 5.3028777 ]
| basis/sp = ['x(x^2-3y^2)' 'z(x^2-y^2)' 'xz^2' 'z^3' 'yz^2' 'xyz' 'y(3x^2-y^2)']
|
| in SO rep (after transformed, reordered, or truncated)
| basis(up) = ['x(x^2-3y^2)' 'z(x^2-y^2)' 'xz^2' 'z^3' 'yz^2' 'xyz' 'y(3x^2-y^2)']
| basis(dn) = ['x(x^2-3y^2)' 'z(x^2-y^2)' 'xz^2' 'z^3' 'yz^2' 'xyz' 'y(3x^2-y^2)']
d-eg orbitals¶
[model]
norb = 2
interaction = slater_uj
slater_uj = [(2, 4.0, 0.9)]
slater_basis = [('cubic', 'eg'),]
# slater_basis = [('cubic', 2, 4),] equivalent
Output of dcore_pre
:
Generating U-matrix
slater_uj = [(2, 4.0, 0.9)]
slater_basis = [('cubic', 'eg')]
slater_basis(basis) = ['cubic']
slater_basis(order) = [['eg']]
Slater interactions
ish = 0
| l = 2
| F_2m = [4. 7.73006135 4.86993865]
| basis/sp = ['xy' 'yz' 'z^2' 'xz' 'x^2-y^2']
|
| in SO rep (after transformed, reordered, or truncated)
| basis(up) = ['z^2' 'x^2-y^2']
| basis(dn) = ['z^2' 'x^2-y^2']
d-t2g orbitals¶
[model]
norb = 3
interaction = slater_uj
slater_uj = [(2, 4.0, 0.9)]
slater_basis = [('cubic', 't2g'),]
# slater_basis = [('cubic', 0, 1, 3),] equivalent
Output of dcore_pre
:
Generating U-matrix
slater_uj = [(2, 4.0, 0.9)]
slater_basis = [('cubic', 't2g')]
slater_basis(basis) = ['cubic']
slater_basis(order) = [['t2g']]
Slater interactions
ish = 0
| l = 2
| F_2m = [4. 7.73006135 4.86993865]
| basis/sp = ['xy' 'yz' 'z^2' 'xz' 'x^2-y^2']
|
| in SO rep (after transformed, reordered, or truncated)
| basis(up) = ['xy' 'yz' 'xz']
| basis(dn) = ['xy' 'yz' 'xz']
d-(xy, x^2-y^2) orbitals¶
[model]
norb = 2
interaction = slater_uj
slater_uj = [(2, 4.0, 0.9)]
slater_basis = [('cubic', 0, 4),]
Output of dcore_pre
:
Generating U-matrix
slater_uj = [(2, 4.0, 0.9)]
slater_basis = [('cubic', 0, 4)]
slater_basis(basis) = ['cubic']
slater_basis(order) = [[0, 4]]
Slater interactions
ish = 0
| l = 2
| F_2m = [4. 7.73006135 4.86993865]
| basis/sp = ['xy' 'yz' 'z^2' 'xz' 'x^2-y^2']
|
| in SO rep (after transformed, reordered, or truncated)
| basis(up) = ['xy' 'x^2-y^2']
| basis(dn) = ['xy' 'x^2-y^2']
spherical harmonics for p orbitals¶
[model]
norb = 3
interaction = slater_uj
slater_uj = [(1, 4.0, 0.9)]
slater_basis = 'spherical'
Output of dcore_pre
:
Generating U-matrix
slater_uj = [(1, 4.0, 0.9)]
slater_basis(basis) = ['spherical']
slater_basis(order) = [None]
Slater interactions
ish = 0
| l = 1
| F_2m = [4. 4.5]
| basis/sp = ['p-1' 'p+0' 'p+1']
|
| in SO rep (after transformed, reordered, or truncated)
| basis(up) = ['p-1' 'p+0' 'p+1']
| basis(dn) = ['p-1' 'p+0' 'p+1']
spherical harmonics for d orbitals¶
[model]
norb = 5
interaction = slater_uj
slater_uj = [(2, 4.0, 0.9)]
slater_basis = 'spherical'
Output of dcore_pre
:
Generating U-matrix
slater_uj = [(2, 4.0, 0.9)]
slater_basis(basis) = ['spherical']
slater_basis(order) = [None]
Slater interactions
ish = 0
| l = 2
| F_2m = [4. 7.73006135 4.86993865]
| basis/sp = ['d-2' 'd-1' 'd+0' 'd+1' 'd+2']
|
| in SO rep (after transformed, reordered, or truncated)
| basis(up) = ['d-2' 'd-1' 'd+0' 'd+1' 'd+2']
| basis(dn) = ['d-2' 'd-1' 'd+0' 'd+1' 'd+2']
spherical harmonics for f orbitals¶
[model]
norb = 7
interaction = slater_uj
slater_uj = [(3, 4.0, 0.9)]
slater_basis = 'spherical'
Output of dcore_pre
:
Generating U-matrix
slater_uj = [(3, 4.0, 0.9)]
slater_basis(basis) = ['spherical']
slater_basis(order) = [None]
Slater interactions
ish = 0
| l = 3
| F_2m = [ 4. 10.72759974 7.1676259 5.3028777 ]
| basis/sp = ['f-3' 'f-2' 'f-1' 'f+0' 'f+1' 'f+2' 'f+3']
|
| in SO rep (after transformed, reordered, or truncated)
| basis(up) = ['f-3' 'f-2' 'f-1' 'f+0' 'f+1' 'f+2' 'f+3']
| basis(dn) = ['f-3' 'f-2' 'f-1' 'f+0' 'f+1' 'f+2' 'f+3']
j-jz basis for p orbitals¶
[model]
norb = 3
interaction = slater_uj
slater_uj = [(1, 4.0, 0.9)]
slater_basis = 'spherical_j'
spin_orbit = True
Output of dcore_pre
:
Generating U-matrix
slater_uj = [(1, 4.0, 0.9)]
slater_basis(basis) = ['spherical_j']
slater_basis(order) = [None]
Slater interactions
ish = 0
| l = 1
| F_2m = [4. 4.5]
| basis/sp = ['p-1' 'p+0' 'p+1']
|
| in SO rep (after transformed, reordered, or truncated)
| basis(up) = ['j1/2-1/2' 'j3/2-3/2' 'j3/2-1/2']
| basis(dn) = ['j1/2+1/2' 'j3/2+3/2' 'j3/2+1/2']
j-jz basis for d orbitals¶
[model]
norb = 5
interaction = slater_uj
slater_uj = [(2, 4.0, 0.9)]
slater_basis = 'spherical_j'
spin_orbit = True
Output of dcore_pre
:
Generating U-matrix
slater_uj = [(2, 4.0, 0.9)]
slater_basis(basis) = ['spherical_j']
slater_basis(order) = [None]
Slater interactions
ish = 0
| l = 2
| F_2m = [4. 7.73006135 4.86993865]
| basis/sp = ['d-2' 'd-1' 'd+0' 'd+1' 'd+2']
|
| in SO rep (after transformed, reordered, or truncated)
| basis(up) = ['j3/2-3/2' 'j3/2-1/2' 'j5/2-5/2' 'j5/2-3/2' 'j5/2-1/2']
| basis(dn) = ['j3/2+3/2' 'j3/2+1/2' 'j5/2+5/2' 'j5/2+3/2' 'j5/2+1/2']
j-jz basis for f orbitals¶
[model]
norb = 7
interaction = slater_uj
slater_uj = [(3, 4.0, 0.9)]
slater_basis = 'spherical_j'
spin_orbit = True
Output of dcore_pre
:
Generating U-matrix
slater_uj = [(3, 4.0, 0.9)]
slater_basis(basis) = ['spherical_j']
slater_basis(order) = [None]
Slater interactions
ish = 0
| l = 3
| F_2m = [ 4. 10.72759974 7.1676259 5.3028777 ]
| basis/sp = ['f-3' 'f-2' 'f-1' 'f+0' 'f+1' 'f+2' 'f+3']
|
| in SO rep (after transformed, reordered, or truncated)
| basis(up) = ['j5/2-5/2' 'j5/2-3/2' 'j5/2-1/2' 'j7/2-7/2' 'j7/2-5/2' 'j7/2-3/2' 'j7/2-1/2']
| basis(dn) = ['j5/2+5/2' 'j5/2+3/2' 'j5/2+1/2' 'j7/2+7/2' 'j7/2+5/2' 'j7/2+3/2' 'j7/2+1/2']
j=5/2 for f orbitals¶
[model]
norb = 3
interaction = slater_uj
slater_uj = [(3, 4.0, 0.9)]
slater_basis = [('spherical_j', 0, 1, 2),]
spin_orbit = True
Output of dcore_pre
:
Generating U-matrix
slater_uj = [(3, 4.0, 0.9)]
slater_basis = [('spherical_j', 0, 1, 2)]
slater_basis(basis) = ['spherical_j']
slater_basis(order) = [[0, 1, 2]]
Slater interactions
ish = 0
| l = 3
| F_2m = [ 4. 10.72759974 7.1676259 5.3028777 ]
| basis/sp = ['f-3' 'f-2' 'f-1' 'f+0' 'f+1' 'f+2' 'f+3']
|
| in SO rep (after transformed, reordered, or truncated)
| basis(up) = ['j5/2-5/2' 'j5/2-3/2' 'j5/2-1/2']
| basis(dn) = ['j5/2+5/2' 'j5/2+3/2' 'j5/2+1/2']