physbo.blm.lik.gauss のソースコード

import numpy as np

[ドキュメント]class gauss: """ Gaussian Attributes ========== linear cov: blm.lik.cov covariance stats """ def __init__( self, linear, cov ): self.linear = linear self.cov = cov self.stats = ()
[ドキュメント] def get_cov( self, N, params = None ): """ Returns covariance matrix Parameters ========== N: int dimension params: float half of log of variance (default: self.cov.params) Returns ======= numpy.ndarray NxN covariance matrix """ if params is None: params = np.copy( self.cov.params ) return self.cov.get_cov( N, params )
[ドキュメント] def get_prec( self, N, params = None ): """ Returns precision matrix Parameters ========== N: int dimension params: float half of log of variance (default: self.cov.params) Returns ======= numpy.ndarray NxN precision matrix """ if params is None: params = np.copy( self.cov.params ) return self.cov.get_cov( N, params )
[ドキュメント] def get_basis( self, X ): """ calculates value of basis function at input Parameter ========= X: numpy.ndarray input See also ======== blm.basis.fourier.get_basis """ return self.linear.basis.get_basis( X )
[ドキュメント] def get_mean( self, X, Psi = None, params = None, bias = None ): """ calculates mean value Parameters ========== X: numpy.ndarray raw input Psi: numpy.ndarray value of feature maps params: numpy.ndarray weight bias: float bias See also ======== blm.basis.fourier.get_mean """ return self.linear.get_mean( X, Psi, params, bias )
[ドキュメント] def set_params( self, params ): """ sets parameters """ self.linear.set_params( params )
[ドキュメント] def set_bias( self, bias ): """ sets bias """ self.linear.set_bias( bias )
[ドキュメント] def sampling( self, fmean ): """ draws samples Parameters ========== fmean: numpy.ndarray means of samples Returns ======= samples: numpy.ndarray """ num_data = fmean.shape[0] eps = np.sqrt(self.cov.sigma2) * np.random.randn( num_data ) return fmean + eps