import numpy as np
from .. import inf
from ... import blm
import learning
from prior import prior
[ドキュメント]class model:
    def __init__(self, lik, mean, cov, inf='exact'):
        """
        Parameters
        ----------
        lik
        mean
        cov
        inf
        """
        self.lik = lik
        self.prior = prior(mean=mean, cov=cov)
        self.inf = inf
        self.num_params = self.lik.num_params + self.prior.num_params
        self.params = self.cat_params(self.lik.params, self.prior.params)
        self.stats = ()
[ドキュメント]    def cat_params(self, lik_params, prior_params):
        """
        Concatinate the likelihood and prior parameters
        Parameters
        ----------
        lik_params: numpy.ndarray
            Parameters for likelihood
        prior_params: numpy.ndarray
            Parameters for prior
        Returns
        -------
        params: numpy.ndarray
            parameters about likelihood and prior
        """
        params = np.append(lik_params, prior_params)
        return params 
[ドキュメント]    def decomp_params(self, params=None):
        """
        decomposing the parameters to those of likelifood and priors
        Parameters
        ----------
        params: numpy.ndarray
            parameters
        Returns
        -------
        lik_params: numpy.ndarray
        prior_params: numpy.ndarray
        """
        if params is None:
            params = np.copy(self.params)
        lik_params = params[0:self.lik.num_params]
        prior_params = params[self.lik.num_params:]
        return lik_params, prior_params 
[ドキュメント]    def set_params(self, params):
        """
        Setting parameters
        Parameters
        ----------
        params: numpy.ndarray
           Parameters.
        """
        self.params = params
        lik_params, prior_params = self.decomp_params(params)
        self.lik.set_params(lik_params)
        self.prior.set_params(prior_params) 
[ドキュメント]    def sub_sampling(self, X, t, N):
        """
        Make subset for sampling
        Parameters
        ----------
        X: numpy.ndarray
           Each row of X denotes the d-dimensional feature vector of search candidate.
        t: numpy.ndarray
           The negative energy of each search candidate (value of the objective function to be optimized).
        N: int
           Total number of data in subset
        Returns
        -------
        subX: numpy.ndarray
        subt: numpy.ndarray
        """
        num_data = X.shape[0]
        if N < num_data:
            index = np.random.permutation(num_data)
            subX = X[index[0:N], :]
            subt = t[index[0:N]]
        else:
            subX = X
            subt = t
        return subX, subt 
[ドキュメント]    def export_blm(self, num_basis):
        """
        Exporting the blm(Baysean linear model) predictor
        Parameters
        ----------
        num_basis: int
            Total number of basis
        Returns
        -------
        physbo.blm.core.model
        """
        if not hasattr(self.prior.cov, "rand_expans"):
            raise ValueError('The kernel must be.')
        basis_params = self.prior.cov.rand_expans(num_basis)
        basis = blm.basis.fourier(basis_params)
        prior = blm.prior.gauss(num_basis)
        lik = blm.lik.gauss(blm.lik.linear(basis, bias=self.prior.get_mean(1)),
                            blm.lik.cov(self.lik.params))
        blr = blm.model(lik, prior)
        return blr 
[ドキュメント]    def eval_marlik(self, params, X, t, N=None):
        """
        Evaluating marginal likelihood.
        Parameters
        ----------
        params: numpy.ndarray
            Parameters.
        X: numpy.ndarray
            N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
        t:  numpy.ndarray
            N dimensional array.
            The negative energy of each search candidate (value of the objective function to be optimized).
        N: int
            Total number of subset data (if not specified, all dataset is used)
        Returns
        -------
            marlik: float
            Marginal likelihood.
        """
        subX, subt = self.sub_sampling(X, t, N)
        if self.inf == 'exact':
            marlik = inf.exact.eval_marlik(self, subX, subt, params=params)
        else:
            pass
        return marlik 
[ドキュメント]    def get_grad_marlik(self, params, X, t, N=None):
        """
        Evaluating gradiant of marginal likelihood.
        Parameters
        ----------
        params: numpy.ndarray
            Parameters.
        X: numpy.ndarray
            N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
        t:  numpy.ndarray
            N dimensional array.
            The negative energy of each search candidate (value of the objective function to be optimized).
        N: int
            Total number of subset data (if not specified, all dataset is used)
        Returns
        -------
        grad_marlik: numpy.ndarray
            Gradiant of marginal likelihood.
        """
        subX, subt = self.sub_sampling(X, t, N)
        if self.inf == 'exact':
            grad_marlik = inf.exact.get_grad_marlik(self, subX, subt, params=params)
        return grad_marlik 
        
[ドキュメント]    def get_params_bound(self):
        """
        Getting boundary of the parameters.
        Returns
        -------
        bound: list
            An array with the tuple (min_params, max_params).
        """
        if self.lik.num_params != 0:
            bound = self.lik.get_params_bound()
        if self.prior.mean.num_params != 0:
            bound.extend(self.prior.mean.get_params_bound())
        if self.prior.cov.num_params != 0:
            bound.extend(self.prior.cov.get_params_bound())
        return bound 
[ドキュメント]    def prepare(self, X, t, params=None):
        """
        Parameters
        ----------
        X: numpy.ndarray
            N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
        t:  numpy.ndarray
            N dimensional array.
            The negative energy of each search candidate (value of the objective function to be optimized).
        params: numpy.ndarray
            Parameters.
        """
        if params is None:
            params = np.copy(self.params)
        if self.inf == 'exact':
            self.stats = inf.exact.prepare(self, X, t, params)
        else:
            pass 
[ドキュメント]    def get_post_fmean(self, X, Z, params=None):
        """
        Calculating posterior mean of model (function)
        Parameters
        ==========
        X: numpy.ndarray
            inputs
        Z: numpy.ndarray
            feature maps
        params: numpy.ndarray
            Parameters
        See also
        ========
        physbo.gp.inf.exact.get_post_fmean
        """
        if params is None:
            params = np.copy(self.params)
        if self.inf == 'exact':
            post_fmu = inf.exact.get_post_fmean(self, X, Z, params)
        return post_fmu 
[ドキュメント]    def get_post_fcov(self, X, Z, params=None, diag=True):
        """
        Calculating posterior covariance matrix of model (function)
        Parameters
        ----------
        X: numpy.ndarray
            inputs
        Z: numpy.ndarray
            feature maps
        params: numpy.ndarray
            Parameters
        diag: bool
            If X is the diagonalization matrix, true.
        Returns
        -------
        physbo.gp.inf.exact.get_post_fcov
        """
        if params is None:
            params = np.copy(self.params)
        if self.inf == 'exact':
            post_fcov = inf.exact.get_post_fcov(self, X, Z, params, diag)
        return post_fcov 
[ドキュメント]    def post_sampling(self, X, Z, params=None, N=1, alpha=1):
        """
        draws samples of mean value of model
        Parameters
        ==========
        X: numpy.ndarray
            inputs
        Z: numpy.ndarray
            feature maps
        N: int
            number of samples
            (default: 1)
        alpha: float
            noise for sampling source
        Returns
        =======
        numpy.ndarray
        """
        if params is None:
            params = np.copy(self.params)
        fmean = self.get_post_fmean(X, Z, params=None)
        fcov = self.get_post_fcov(X, Z, params=None, diag=False)
        return np.random.multivariate_normal(fmean, fcov * alpha**2, N) 
[ドキュメント]    def predict_sampling(self, X, Z, params=None, N=1):
        """
        Parameters
        ----------
        X: numpy.ndarray
            inputs
        Z: numpy.ndarray
            feature maps
        params: numpy.ndarray
            Parameters
        N: int
            number of samples
            (default: 1)
        Returns
        -------
        numpy.ndarray
        """
        if params is None:
            params = np.copy(self.params)
        ndata = Z.shape[0]
        fmean = self.get_post_fmean(X, Z, params=None)
        fcov = self.get_post_fcov(X, Z, params=None, diag=False) \
            
+ self.lik.get_cov(ndata)
        return np.random.multivariate_normal(fmean, fcov, N) 
[ドキュメント]    def print_params(self):
        """
        Printing parameters
        """
        print ('\n')
        if self.lik.num_params != 0:
            print 'likelihood parameter =  ', self.lik.params
        if self.prior.mean.num_params != 0:
            print 'mean parameter in GP prior: ', self.prior.mean.params
        print 'covariance parameter in GP prior: ', self.prior.cov.params
        print '\n' 
[ドキュメント]    def get_cand_params(self, X, t):
        """
        Getting candidate for parameters
        Parameters
        ----------
        X: numpy.ndarray
            N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
        t:  numpy.ndarray
            N dimensional array.
            The negative energy of each search candidate (value of the objective function to be optimized).
        Returns
        -------
        params: numpy.ndarray
            Parameters
        """
        params = np.zeros(self.num_params)
        if self.lik.num_params != 0:
            params[0:self.lik.num_params] = self.lik.get_cand_params(t)
        temp = self.lik.num_params
        if self.prior.mean.num_params != 0:
            params[temp:temp + self.prior.mean.num_params] \
                                
= self.prior.mean.get_cand_params(t)
        temp += self.prior.mean.num_params
        if self.prior.cov.num_params != 0:
            params[temp:] = self.prior.cov.get_cand_params(X, t)
        return params 
[ドキュメント]    def fit(self, X, t, config):
        """
        Fitting function (update parameters)
        Parameters
        ----------
        X: numpy.ndarray
            N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
        t:  numpy.ndarray
            N dimensional array.
            The negative energy of each search candidate (value of the objective function to be optimized).
        config: physbo.misc.set_config object
        """
        method = config.learning.method
        if method == 'adam':
            adam = learning.adam(self, config)
            params = adam.run(X, t)
        if method in ('bfgs', 'batch'):
            bfgs = learning.batch(self, config)
            params = bfgs.run(X, t)
        self.set_params(params)