physbo.gp.predictor のソースコード

import numpy as np
import cov
import lik
import mean
import core
from ..predictor import base_predictor

[ドキュメント]class predictor( base_predictor ): ''' predictor ''' def __init__( self, config, model = None ): """ Parameters ---------- config: physbo.misc.set_config configuration model: physbo.gp.core.model """ super( predictor, self ).__init__( config, model )
[ドキュメント] def fit(self, training, num_basis=None): """ Fitting model to training dataset Parameters ---------- training: physbo.variable dataset for training num_basis: int the number of basis (default: self.config.predict.num_basis) """ if self.model.prior.cov.num_dim is None: self.model.prior.cov.num_dim = training.X.shape[1] self.model.fit(training.X, training.t, self.config) self.delete_stats()
[ドキュメント] def get_basis( self, *args, **kwds ): """ Parameters ---------- args kwds Returns ------- """ pass
[ドキュメント] def get_post_params( self, *args, **kwds ): """ Parameters ---------- args kwds Returns ------- """ pass
[ドキュメント] def prepare( self, training ): """ Initializing model by using training data set Parameters ---------- training: physbo.variable dataset for training """ self.model.prepare( training.X, training.t )
[ドキュメント] def delete_stats( self ): self.model.stats = None
[ドキュメント] def get_post_fmean( self, training, test ): """ Calculating posterior mean value of model Parameters ---------- training: physbo.variable training dataset. If already trained, the model does not use this. test: physbo.variable inputs Returns ------- numpy.ndarray """ if self.model.stats is None: self.prepare( training ) return self.model.get_post_fmean( training.X, test.X )
[ドキュメント] def get_post_fcov( self, training, test, diag = True ): """ Calculating posterior variance-covariance matrix of model Parameters ---------- training: physbo.variable training dataset. If already trained, the model does not use this. test: physbo.variable inputs diag: bool Diagonlization flag in physbo.exact.get_post_fcov function. Returns ------- numpy.ndarray """ if self.model.stats is None: self.prepare(training) return self.model.get_post_fcov( training.X, test.X, diag = diag )
[ドキュメント] def get_post_samples( self, training, test, alpha = 1 ): """ Drawing samples of mean values of model Parameters ---------- training: physbo.variable training dataset. If already trained, the model does not use this. test: physbo.variable inputs (not used) alpha: float tuning parameter of the covariance by multiplying alpha**2 for np.random.multivariate_normal. Returns ------- numpy.ndarray """ if self.model.stats is None: self.prepare( training ) return self.model.post_sampling( training.X, test.X, alpha = alpha )
[ドキュメント] def get_predict_samples( self, training, test, N = 1 ): """ Drawing samples of values of model Parameters ---------- training: physbo.variable training dataset. If already trained, the model does not use this. test: physbo.variable inputs N: int number of samples (default: 1) Returns ------- numpy.ndarray """ if self.model.stats is None: self.prepare( training ) return self.model.predict_sampling( training.X, test.X, N = N )