import numpy as np
import ConfigParser
[ドキュメント]class set_config:
    def __init__(self, search_config=None, learning_config=None):
        """
        Setting configuration for search and learning.
        Parameters
        ----------
        search_config: physbo.misc.search object
        learning_config: physbo.misc.learning object
        """
        if search_config is None:
            search_config = search()
        self.search = search_config
        if learning_config is None:
            learning_config = adam()
        self.learning = learning_config
[ドキュメント]    def show(self):
        """
        Showing information of search and learning objects.
        Returns
        -------
        """
        self.search.show()
        self.learning.show() 
[ドキュメント]    def load(self, file_name='config.ini'):
        """
        Loading information of configuration.
        Parameters
        ----------
        file_name: str
        An input file name of configuration.
        Returns
        -------
        """
        config = ConfigParser.SafeConfigParser()
        config.read(file_name)
        search_config = search()
        self.search = search_config
        self.search.load(config)
        temp_dict = config._sections['learning']
        method = temp_dict.get('method', 'adam')
        if method == 'adam':
            learning_config = adam()
            self.learning = learning_config
            self.learning.load(config)
        if method in ('bfgs', 'batch'):
            learning_config = batch()
            self.learning = learning_config
            self.learning.load(config)  
[ドキュメント]class search:
    def __init__(self):
        self.multi_probe_num_sampling = 20
        self.alpha = 1.0
[ドキュメント]    def load(self, config):
        """
        Loading information of configuration from config._sectoins['search'].
        Parameters
        ----------
        config: physbo.misc.set_config object
        Returns
        -------
        """
        temp_dict = config._sections['search']
        self.multi_probe_num_sampling = \
            
int(temp_dict.get('multi_probe_num_sampling', 20))
        self.alpha = np.float64(temp_dict.get('alpha', 1.0)) 
[ドキュメント]    def show(self):
        """
        Showing information about search object.
        Returns
        -------
        """
        print '(search)'
        print 'multi_probe_num_sampling: ', self.multi_probe_num_sampling
        print 'alpha: ', self.alpha
        print '\n'  
[ドキュメント]class learning(object):
    def __init__(self):
        self.is_disp = True
        self.num_disp = 10
        self.num_init_params_search = 20
        self.method = 'adam'
[ドキュメント]    def show(self):
        """
        Showing information about learning object.
        Returns
        -------
        """
        print '( learning )'
        print 'method : ', self.method
        print 'is_disp: ', self.is_disp
        print 'num_disp: ', self.num_disp
        print 'num_init_params_search: ', self.num_init_params_search 
[ドキュメント]    def load(self, config):
        """
        Loading information of configuration from config._sectoins['learning'].
        Parameters
        ----------
        config: physbo.misc.set_config object
        Returns
        -------
        """
        temp_dict = config._sections['learning']
        self.method = temp_dict.get('method', 'adam')
        self.is_disp = boolean(temp_dict.get('is_disp', True))
        self.num_disp = int(temp_dict.get('num_disp', 10))
        self.num_init_params_search\
            
= int(temp_dict.get('num_init_params_search', 20))  
[ドキュメント]class batch(learning):
    def __init__(self):
        super(batch, self).__init__()
        self.method = 'bfgs'
        self.max_iter = 200
        self.max_iter_init_params_search = 20
        self.batch_size = 5000
[ドキュメント]    def show(self):
        """
        Showing information about configuration about batch object.
        Returns
        -------
        """
        super(batch, self).show()
        print 'max_iter: ', self.max_iter
        print 'max_iter_init_params_search: ', self.max_iter_init_params_search
        print 'batch_size: ', self.batch_size 
[ドキュメント]    def load(self, config):
        """
        Loading information of configuration from config._sectoins['batch'].
        Parameters
        ----------
        config: physbo.misc.set_config object
        Returns
        -------
        """
        super(batch, self).load(config)
        temp_dict = config._sections['batch']
        self.max_iter = int(temp_dict.get('max_iter', 200))
        self.max_iter_init_params_search \
            
= int(temp_dict.get('max_iter_init_params_search', 20))
        self.batch_size = int(temp_dict.get('batch_size', 5000))  
[ドキュメント]class online(learning):
    def __init__(self):
        super(online, self).__init__()
        self.max_epoch = 500
        self.max_epoch_init_params_search = 50
        self.batch_size = 64
        self.eval_size = 5000
[ドキュメント]    def show(self):
        """
        Showing information about configuration about online object.
        Returns
        -------
        """
        super(online, self).show()
        print 'max_epoch: ', self.max_epoch
        print 'max_epoch_init_params_search: ', \
            
self.max_epoch_init_params_search
        print 'batch_size: ', self.batch_size
        print 'eval_size: ', self.eval_size 
[ドキュメント]    def load(self, config):
        """
        Loading information of configuration from config._sectoins['online'].
        Parameters
        ----------
        config: physbo.misc.set_config object
        Returns
        -------
        """
        super(online, self).load(config)
        temp_dict = config._sections['online']
        self.max_epoch = int(temp_dict.get('max_epoch', 1000))
        self.max_epoch_init_params_search \
            
= int(temp_dict.get('max_epoch_init_params_search', 50))
        self.batch_size = int(temp_dict.get('batch_size', 64))
        self.eval_size = int(temp_dict.get('eval_size', 5000))  
[ドキュメント]class adam(online):
    def __init__(self):
        super(adam, self).__init__()
        self.method = 'adam'
        self.alpha = 0.001
        self.beta = 0.9
        self.gamma = 0.999
        self.epsilon = 1e-6
[ドキュメント]    def show(self):
        """
        Showing information about configuration about adam object.
        Returns
        -------
        """
        super(adam, self).show()
        print 'alpha = ', self.alpha
        print 'beta = ', self.beta
        print 'gamma = ', self.gamma
        print 'epsilon = ', self.epsilon
        print '\n' 
[ドキュメント]    def load(self, config):
        """
        Loading information of configuration from config._sectoins['adam'].
        Parameters
        ----------
        config: physbo.misc.set_config object
        Returns
        -------
        """
        super(adam, self).load(config)
        temp_dict = config._sections['adam']
        self.alpha = np.float64(temp_dict.get('alpha', 0.001))
        self.beta = np.float64(temp_dict.get('beta', 0.9))
        self.gamma = np.float64(temp_dict.get('gamma', 0.9999))
        self.epsilon = np.float64(temp_dict.get('epsilon', 1e-6))  
[ドキュメント]def boolean(str):
    """
    Return boolean.
    Parameters
    ----------
    str: str or boolean
    Returns
    -------
    True or False
    """
    if str == 'True' or str is True:
        return True
    else:
        return False