physbo.search.discrete.results のソースコード

import numpy as np
from .. import utility
MAX_SEARCH = int(30000)


[ドキュメント]class history: def __init__(self): self.num_runs = int(0) self.total_num_search = int(0) self.fx = np.zeros(MAX_SEARCH, dtype=float) self.chosed_actions = np.zeros(MAX_SEARCH, dtype=int) self.terminal_num_run = np.zeros(MAX_SEARCH, dtype=int)
[ドキュメント] def write(self, t, action): """ Overwrite fx and chosed_actions by t and action. Parameters ---------- t: numpy.ndarray N dimensional array. The negative energy of each search candidate (value of the objective function to be optimized). action: numpy.ndarray N dimensional array. The indexes of actions of each search candidate. Returns ------- """ N = utility.length_vector(t) st = self.total_num_search en = st + N self.terminal_num_run[self.num_runs] = en self.fx[st:en] = t self.chosed_actions[st:en] = action self.num_runs += 1 self.total_num_search += N
[ドキュメント] def export_sequence_best_fx(self): """ Export fx and actions at each sequence. (The total number of data is num_runs.) Returns ------- best_fx: numpy.ndarray best_actions: numpy.ndarray """ best_fx = np.zeros(self.num_runs) best_actions = np.zeros(self.num_runs) for n in xrange(self.num_runs): index = np.argmax(self.fx[0:self.terminal_num_run[n]]) best_actions[n] = self.chosed_actions[index] best_fx[n] = self.fx[index] return best_fx, best_actions
[ドキュメント] def export_all_sequence_best_fx(self): """ Export all fx and actions at each sequence. (The total number of data is total_num_research.) Returns ------- best_fx: numpy.ndarray best_actions: numpy.ndarray """ best_fx = np.zeros(self.total_num_search) best_actions = np.zeros(self.total_num_search) best_fx[0] = self.fx[0] best_actions[0] = self.chosed_actions[0] for n in xrange(1, self.total_num_search): if best_fx[n-1] < self.fx[n]: best_fx[n] = self.fx[n] best_actions[n] = self.chosed_actions[n] else: best_fx[n] = best_fx[n-1] best_actions[n] = best_actions[n-1] return best_fx, best_actions
[ドキュメント] def save(self, filename): """ Save the information of the history. Parameters ---------- filename: str The name of the file which stores the information of the history Returns ------- """ N = self.total_num_search M = self.num_runs np.savez_compressed(filename, num_runs=M, total_num_search=N, fx=self.fx[0:N], chosed_actions=self.chosed_actions[0:N], terminal_num_run=self.terminal_num_run[0:M])
[ドキュメント] def load(self, filename): """ Load the information of the history. Parameters ---------- filename: str The name of the file which stores the information of the history Returns ------- """ data = np.load(filename) M = data['num_runs'] N = data['total_num_search'] self.num_runs = M self.total_num_search = N self.fx[0:N] = data['fx'] self.chosed_actions[0:N] = data['chosed_actions'] self.terminal_num_run[0:M] = data['terminal_num_run']