import numpy as np
[ドキュメント]def show_search_results(history, N):
n = history.total_num_search
index = np.argmax(history.fx[0:n])
if N == 1:
print '%04d-th step: f(x) = %f (action=%d)' \
% (n, history.fx[n-1], history.chosed_actions[n-1])
print ' current best f(x) = %f (best action=%d) \n' \
% (history.fx[index], history.chosed_actions[index])
else:
print 'current best f(x) = %f (best action = %d) ' \
% (history.fx[index], history.chosed_actions[index])
print 'list of simulation results'
st = history.total_num_search - N
en = history.total_num_search
for n in xrange(st, en):
print 'f(x)=%f (action = %d)' \
% (history.fx[n], history.chosed_actions[n])
print '\n'
[ドキュメント]def show_start_message_multi_search(N, score=None):
if score == 'EI':
print '%04d-th multiple probe search (EI) \n' % (N+1)
elif score == 'PI':
print '%04d-th multiple probe search (PI) \n' % (N+1)
elif score == 'TS':
print '%04d-th multiple probe search (TS) \n' % (N+1)
else:
print '%04d-th multiple probe search (random) \n' % (N+1)
[ドキュメント]def show_interactive_mode(simulator, history):
if simulator is None and history.total_num_search == 0:
print 'interactive mode stars ... \n '
[ドキュメント]def length_vector(t):
N = len(t) if hasattr(t, '__len__') else 1
return N
[ドキュメント]def is_learning(n, interval):
if interval == 0:
return True if n == 0 else False
elif interval > 0:
return True if np.mod(n, interval) == 0 else False
else:
return False