physbo.blm.core.model module¶
- 
class 
physbo.blm.core.model.model(lik, prior, options={})[ソース]¶ Baysean Linear Model
- 
prior¶ prior distribution of weights
Type: physbo.blm.prior.gauss 
- 
lik¶ kernel
Type: physbo.blm.lik.gauss 
- 
nbasis¶ number of features in random feature map
Type: int 
- 
stats¶ auxially parameters for sampling
Type: Tuple 
- 
method¶ sampling method
Type: str 
- 
get_post_fcov(X, Psi=None, diag=True)[ソース]¶ calculates posterior covariance of model
パラメータ: - X (numpy.ndarray) -- inputs
 - Psi (numpy.ndarray) -- feature maps (default: blm.lik.linear.basis.get_basis(X))
 - diag (bool) -- if True, returns only variances as a diagonal matrix (default: True)
 
戻り値: 戻り値の型: numpy.ndarray
- 
get_post_fmean(X, Psi=None, w=None)[ソース]¶ calculates posterior mean of model (function)
パラメータ: - X (numpy.ndarray) -- inputs
 - Psi (numpy.ndarray) -- feature maps
 - w (numpy.ndarray) -- weight
 
- 
post_sampling(Xtest, Psi=None, N=1, alpha=1.0)[ソース]¶ draws samples of mean value of model
パラメータ: - Xtest (numpy.ndarray) -- inputs
 - Psi (numpy.ndarray) -- feature maps
(default: 
blm.lik.get_basis(Xtest)) - N (int) -- number of samples (default: 1)
 - alpha (float) -- noise for sampling source
 
戻り値: 戻り値の型: numpy.ndarray
- 
predict_sampling(Xtest, Psi=None, N=1)[ソース]¶ draws samples from model
パラメータ: - Xtest (numpy.ndarray) -- inputs
 - Psi (numpy.ndarray) -- feature map
(default: 
blm.lik.get_basis(Xtest)) - N (int) -- number of samples (default: 1)
 
戻り値: 戻り値の型: numpy.ndarray
- 
prepare(X, t, Psi=None)[ソース]¶ initializes model by using the first training dataset
パラメータ: - X (numpy.ndarray) -- inputs
 - t (numpy.ndarray) -- target (label)
 - Psi (numpy.ndarray) -- feature maps
 
-