physbo.gp.core.prior module¶
-
class
physbo.gp.core.prior.
prior
(mean, cov)[ソース]¶ prior of gaussian process
-
cat_params
(mean_params, cov_params)[ソース]¶ パラメータ: - mean_params (numpy.ndarray) -- Mean values of parameters
- cov_params (numpy.ndarray) -- Covariance matrix of parameters
戻り値: 戻り値の型: numpy.ndarray
-
decomp_params
(params)[ソース]¶ decomposing the parameters to those of mean values and covariance matrix for priors
パラメータ: params (numpy.ndarray) -- parameters 戻り値: - mean_params (numpy.ndarray)
- cov_params (numpy.ndarray)
-
get_cov
(X, Z=None, params=None, diag=False)[ソース]¶ Calculating the variance-covariance matrix of priors
パラメータ: - X (numpy.ndarray) -- N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
- Z (numpy.ndarray) -- N x d dimensional matrix. Each row of Z denotes the d-dimensional feature vector of tests.
- params (numpy.ndarray) -- Parameters.
- diag (bool) -- If X is the diagonalization matrix, true.
戻り値: 戻り値の型: numpy.ndarray
-
get_grad_cov
(X, params=None)[ソース]¶ Calculating the covariance matrix priors
パラメータ: - X (numpy.ndarray) -- N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
- params (numpy.ndarray) -- Parameters.
戻り値: 戻り値の型: numpy.ndarray
-
get_grad_mean
(num_data, params=None)[ソース]¶ Calculating the gradiant of mean values of priors
パラメータ: - num_data (int) -- Total number of data
- params (numpy.ndarray) -- Parameters
戻り値: 戻り値の型: numpy.ndarray
-
get_mean
(num_data, params=None)[ソース]¶ Calculating the mean value of priors
パラメータ: - num_data (int) -- Total number of data
- params (numpy.ndarray) -- Parameters
戻り値: 戻り値の型: float
-
sampling
(X, N=1)[ソース]¶ Sampling from GP prior
パラメータ: - X (numpy.ndarray) -- N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
- N (int) --
戻り値: 戻り値の型: float
-
set_cov_params
(params)[ソース]¶ Setting parameters for covariance matrix of priors
パラメータ: params (numpy.ndarray) -- Parameters
-