physbo.gp.core.prior module¶
- 
class 
physbo.gp.core.prior.prior(mean, cov)[ソース]¶ prior of gaussian process
- 
cat_params(mean_params, cov_params)[ソース]¶ パラメータ: - mean_params (numpy.ndarray) -- Mean values of parameters
 - cov_params (numpy.ndarray) -- Covariance matrix of parameters
 
戻り値: 戻り値の型: numpy.ndarray
- 
decomp_params(params)[ソース]¶ decomposing the parameters to those of mean values and covariance matrix for priors
パラメータ: params (numpy.ndarray) -- parameters 戻り値: - mean_params (numpy.ndarray)
 - cov_params (numpy.ndarray)
 
- 
get_cov(X, Z=None, params=None, diag=False)[ソース]¶ Calculating the variance-covariance matrix of priors
パラメータ: - X (numpy.ndarray) -- N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
 - Z (numpy.ndarray) -- N x d dimensional matrix. Each row of Z denotes the d-dimensional feature vector of tests.
 - params (numpy.ndarray) -- Parameters.
 - diag (bool) -- If X is the diagonalization matrix, true.
 
戻り値: 戻り値の型: numpy.ndarray
- 
get_grad_cov(X, params=None)[ソース]¶ Calculating the covariance matrix priors
パラメータ: - X (numpy.ndarray) -- N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
 - params (numpy.ndarray) -- Parameters.
 
戻り値: 戻り値の型: numpy.ndarray
- 
get_grad_mean(num_data, params=None)[ソース]¶ Calculating the gradiant of mean values of priors
パラメータ: - num_data (int) -- Total number of data
 - params (numpy.ndarray) -- Parameters
 
戻り値: 戻り値の型: numpy.ndarray
- 
get_mean(num_data, params=None)[ソース]¶ Calculating the mean value of priors
パラメータ: - num_data (int) -- Total number of data
 - params (numpy.ndarray) -- Parameters
 
戻り値: 戻り値の型: float
- 
sampling(X, N=1)[ソース]¶ Sampling from GP prior
パラメータ: - X (numpy.ndarray) -- N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
 - N (int) --
 
戻り値: 戻り値の型: float
- 
set_cov_params(params)[ソース]¶ Setting parameters for covariance matrix of priors
パラメータ: params (numpy.ndarray) -- Parameters 
-