physbo.search.score module¶
- 
physbo.search.score.EI(predictor, training, test, fmax=None)[ソース]¶ Maximum expected improvement.
パラメータ: - predictor (predictor object) -- Base class is defined in physbo.predictor.
 - training (physbo.variable) -- Training dataset. If already trained, the model does not use this.
 - test (physbo.variable) -- Inputs
 - fmax (float) -- Max value of posterior probability distribution. If not set fmax, the max value of posterior mean of weights is set.
 
戻り値: score
戻り値の型: numpy.ndarray
- 
physbo.search.score.PI(predictor, training, test, fmax=None)[ソース]¶ Maximum probability of improvement.
パラメータ: - predictor (predictor object) -- Base class is defined in physbo.predictor.
 - training (physbo.variable) -- Training dataset. If already trained, the model does not use this.
 - test (physbo.variable) -- Inputs
 - fmax (float) -- Max value of posterior probability distribution. If not set fmax, the max value of posterior mean of weights is set.
 
戻り値: score
戻り値の型: numpy.ndarray
- 
physbo.search.score.TS(predictor, training, test, alpha=1)[ソース]¶ Thompson sampling (See Sec. 2.1 in Materials Discovery Volume 4, June 2016, Pages 18-21)
パラメータ: - predictor (predictor object) -- Base class is defined in physbo.predictor.
 - training (physbo.variable) -- Training dataset. If already trained, the model does not use this.
 - test (physbo.variable) -- Inputs
 - alpha (float) -- noise for sampling source (default: 1.0)
 
戻り値: score
戻り値の型: numpy.ndarray