physbo.blm.inf.exact のソースコード

import numpy as np
import scipy
from ... import misc


[ドキュメント]def prepare(blm, X, t, Psi=None): """ initializes auxiaialy parameters for quick sampling ``blm.stats`` will be updated. Parameters ========== blm: physbo.blm.core.model model X: numpy.ndarray inputs t: numpy.ndarray target (label) Psi: feature maps (default: blm.lik.get_basis(X)) """ if Psi is None: Psi = blm.lik.get_basis(X) PsiT = Psi.transpose() G = np.dot(PsiT, Psi) * blm.lik.cov.prec A = G + blm.prior.get_prec() L = scipy.linalg.cholesky(A, check_finite=False) b = PsiT.dot(t - blm.lik.linear.bias) alpha = misc.gauss_elim(L, b) blm.stats = (L, b, alpha)
[ドキュメント]def update_stats(blm, x, t, psi=None): """ calculates new auxiaialy parameters for quick sampling by fast-update Parameters ========== blm: physbo.blm.core.model model x: numpy.ndarray input t: numpy.ndarray target (label) psi: feature map (default: blm.lik.get_basis(X)) Returns ======= (L, b, alpha): Tuple new auxially parameters Notes ===== ``blm.stats[0]`` (L) will be mutated while the others not. """ if psi is None: psi = blm.lik.get_basis(x) L = blm.stats[0] b = blm.stats[1] + (t - blm.lik.linear.bias) * psi misc.cholupdate(L, psi * np.sqrt(blm.lik.cov.prec)) alpha = misc.gauss_elim(L, b) return (L, b, alpha)
[ドキュメント]def sampling(blm, w_mu=None, N=1, alpha=1.0): """ draws samples of weights Parameters ========== blm: physbo.blm.core.model model w_mu: numpy.ndarray mean of weight N: int the number of samples (default: 1) alpha: float noise for sampling source (default: 1.0) Returns ======= numpy.ndarray samples of weights """ if w_mu is None: w_mu = get_post_params_mean(blm) if N == 1: z = np.random.randn(blm.nbasis) * alpha else: z = np.random.randn(blm.nbasis, N) * alpha L = blm.stats[0] invLz = scipy.linalg.solve_triangular( L, z, lower=False, overwrite_b=False, check_finite=False ) return (invLz.transpose() + w_mu).transpose()
[ドキュメント]def get_post_params_mean(blm): """ calculates mean of weight Parameters ========== blm: physbo.blm.core.model Returns ======= numpy.ndarray """ return blm.stats[2] * blm.lik.cov.prec
[ドキュメント]def get_post_fmean(blm, X, Psi=None, w=None): """ calculates posterior mean of model Parameters ========== blm: physbo.blm.core.model X: numpy.ndarray inputs Psi: numpy.ndarray feature maps (default: blm.lik.linear.basis.get_basis(X)) w: numpy.ndarray weights (default: get_post_params_mean(blm)) Returns ======= numpy.ndarray """ if Psi is None: Psi = blm.lik.linear.basis.get_basis(X) if w is None: w = get_post_params_mean(blm) return Psi.dot(w) + blm.lik.linear.bias
[ドキュメント]def get_post_fcov(blm, X, Psi=None, diag=True): """ calculates posterior covariance of model Parameters ========== blm: physbo.blm.core.model X: numpy.ndarray inputs Psi: numpy.ndarray feature maps (default: blm.lik.linear.basis.get_basis(X)) diag: bool if True, returns only variances as a diagonal matrix (default: True) Returns ======= numpy.ndarray """ if Psi is None: Psi = blm.lik.linear.basis.get_basis(X) L = blm.stats[0] R = scipy.linalg.solve_triangular( L.transpose(), Psi.transpose(), lower=True, overwrite_b=False, check_finite=False, ) RT = R.transpose() if diag is True: fcov = misc.diagAB(RT, R) else: fcov = np.dot(RT, R) return fcov