import numpy as np
from .. import inf
from ... import blm
from . import learning
from .prior import prior
[ドキュメント]class model:
def __init__(self, lik, mean, cov, inf="exact"):
"""
Parameters
----------
lik
mean
cov
inf
"""
self.lik = lik
self.prior = prior(mean=mean, cov=cov)
self.inf = inf
self.num_params = self.lik.num_params + self.prior.num_params
self.params = self.cat_params(self.lik.params, self.prior.params)
self.stats = ()
[ドキュメント] def cat_params(self, lik_params, prior_params):
"""
Concatinate the likelihood and prior parameters
Parameters
----------
lik_params: numpy.ndarray
Parameters for likelihood
prior_params: numpy.ndarray
Parameters for prior
Returns
-------
params: numpy.ndarray
parameters about likelihood and prior
"""
params = np.append(lik_params, prior_params)
return params
[ドキュメント] def decomp_params(self, params=None):
"""
decomposing the parameters to those of likelifood and priors
Parameters
----------
params: numpy.ndarray
parameters
Returns
-------
lik_params: numpy.ndarray
prior_params: numpy.ndarray
"""
if params is None:
params = np.copy(self.params)
lik_params = params[0 : self.lik.num_params]
prior_params = params[self.lik.num_params :]
return lik_params, prior_params
[ドキュメント] def set_params(self, params):
"""
Setting parameters
Parameters
----------
params: numpy.ndarray
Parameters.
"""
self.params = params
lik_params, prior_params = self.decomp_params(params)
self.lik.set_params(lik_params)
self.prior.set_params(prior_params)
[ドキュメント] def sub_sampling(self, X, t, N):
"""
Make subset for sampling
Parameters
----------
X: numpy.ndarray
Each row of X denotes the d-dimensional feature vector of search candidate.
t: numpy.ndarray
The negative energy of each search candidate (value of the objective function to be optimized).
N: int
Total number of data in subset
Returns
-------
subX: numpy.ndarray
subt: numpy.ndarray
"""
num_data = X.shape[0]
if N is not None and N < num_data:
index = np.random.permutation(num_data)
subX = X[index[0:N], :]
subt = t[index[0:N]]
else:
subX = X
subt = t
return subX, subt
[ドキュメント] def export_blm(self, num_basis):
"""
Exporting the blm(Baysean linear model) predictor
Parameters
----------
num_basis: int
Total number of basis
Returns
-------
physbo.blm.core.model
"""
if not hasattr(self.prior.cov, "rand_expans"):
raise ValueError("The kernel must be.")
basis_params = self.prior.cov.rand_expans(num_basis)
basis = blm.basis.fourier(basis_params)
prior = blm.prior.gauss(num_basis)
lik = blm.lik.gauss(
blm.lik.linear(basis, bias=self.prior.get_mean(1)),
blm.lik.cov(self.lik.params),
)
blr = blm.model(lik, prior)
return blr
[ドキュメント] def eval_marlik(self, params, X, t, N=None):
"""
Evaluating marginal likelihood.
Parameters
----------
params: numpy.ndarray
Parameters.
X: numpy.ndarray
N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
t: numpy.ndarray
N dimensional array.
The negative energy of each search candidate (value of the objective function to be optimized).
N: int
Total number of subset data (if not specified, all dataset is used)
Returns
-------
marlik: float
Marginal likelihood.
"""
subX, subt = self.sub_sampling(X, t, N)
if self.inf == "exact":
marlik = inf.exact.eval_marlik(self, subX, subt, params=params)
else:
pass
return marlik
[ドキュメント] def get_grad_marlik(self, params, X, t, N=None):
"""
Evaluating gradiant of marginal likelihood.
Parameters
----------
params: numpy.ndarray
Parameters.
X: numpy.ndarray
N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
t: numpy.ndarray
N dimensional array.
The negative energy of each search candidate (value of the objective function to be optimized).
N: int
Total number of subset data (if not specified, all dataset is used)
Returns
-------
grad_marlik: numpy.ndarray
Gradiant of marginal likelihood.
"""
subX, subt = self.sub_sampling(X, t, N)
if self.inf == "exact":
grad_marlik = inf.exact.get_grad_marlik(self, subX, subt, params=params)
return grad_marlik
[ドキュメント] def get_params_bound(self):
"""
Getting boundary of the parameters.
Returns
-------
bound: list
An array with the tuple (min_params, max_params).
"""
if self.lik.num_params != 0:
bound = self.lik.get_params_bound()
if self.prior.mean.num_params != 0:
bound.extend(self.prior.mean.get_params_bound())
if self.prior.cov.num_params != 0:
bound.extend(self.prior.cov.get_params_bound())
return bound
[ドキュメント] def prepare(self, X, t, params=None):
"""
Parameters
----------
X: numpy.ndarray
N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
t: numpy.ndarray
N dimensional array.
The negative energy of each search candidate (value of the objective function to be optimized).
params: numpy.ndarray
Parameters.
"""
if params is None:
params = np.copy(self.params)
if self.inf == "exact":
self.stats = inf.exact.prepare(self, X, t, params)
else:
pass
[ドキュメント] def get_post_fmean(self, X, Z, params=None):
"""
Calculating posterior mean of model (function)
Parameters
==========
X: numpy.ndarray
inputs
Z: numpy.ndarray
feature maps
params: numpy.ndarray
Parameters
See also
========
physbo.gp.inf.exact.get_post_fmean
"""
if params is None:
params = np.copy(self.params)
if self.inf == "exact":
post_fmu = inf.exact.get_post_fmean(self, X, Z, params)
return post_fmu
[ドキュメント] def get_post_fcov(self, X, Z, params=None, diag=True):
"""
Calculating posterior covariance matrix of model (function)
Parameters
----------
X: numpy.ndarray
inputs
Z: numpy.ndarray
feature maps
params: numpy.ndarray
Parameters
diag: bool
If X is the diagonalization matrix, true.
Returns
-------
physbo.gp.inf.exact.get_post_fcov
"""
if params is None:
params = np.copy(self.params)
if self.inf == "exact":
post_fcov = inf.exact.get_post_fcov(self, X, Z, params, diag)
return post_fcov
[ドキュメント] def post_sampling(self, X, Z, params=None, N=1, alpha=1):
"""
draws samples of mean value of model
Parameters
==========
X: numpy.ndarray
inputs
Z: numpy.ndarray
feature maps
N: int
number of samples
(default: 1)
alpha: float
noise for sampling source
Returns
=======
numpy.ndarray
"""
if params is None:
params = np.copy(self.params)
fmean = self.get_post_fmean(X, Z, params=None)
fcov = self.get_post_fcov(X, Z, params=None, diag=False)
return np.random.multivariate_normal(fmean, fcov * alpha ** 2, N)
[ドキュメント] def predict_sampling(self, X, Z, params=None, N=1):
"""
Parameters
----------
X: numpy.ndarray
inputs
Z: numpy.ndarray
feature maps
params: numpy.ndarray
Parameters
N: int
number of samples
(default: 1)
Returns
-------
numpy.ndarray
"""
if params is None:
params = np.copy(self.params)
ndata = Z.shape[0]
fmean = self.get_post_fmean(X, Z, params=None)
fcov = self.get_post_fcov(X, Z, params=None, diag=False) + self.lik.get_cov(
ndata
)
return np.random.multivariate_normal(fmean, fcov, N)
[ドキュメント] def print_params(self):
"""
Printing parameters
"""
print("\n")
if self.lik.num_params != 0:
print("likelihood parameter = ", self.lik.params)
if self.prior.mean.num_params != 0:
print("mean parameter in GP prior: ", self.prior.mean.params)
print("covariance parameter in GP prior: ", self.prior.cov.params)
print("\n")
[ドキュメント] def get_cand_params(self, X, t):
"""
Getting candidate for parameters
Parameters
----------
X: numpy.ndarray
N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
t: numpy.ndarray
N dimensional array.
The negative energy of each search candidate (value of the objective function to be optimized).
Returns
-------
params: numpy.ndarray
Parameters
"""
params = np.zeros(self.num_params)
if self.lik.num_params != 0:
params[0 : self.lik.num_params] = self.lik.get_cand_params(t)
temp = self.lik.num_params
if self.prior.mean.num_params != 0:
params[
temp : temp + self.prior.mean.num_params
] = self.prior.mean.get_cand_params(t)
temp += self.prior.mean.num_params
if self.prior.cov.num_params != 0:
params[temp:] = self.prior.cov.get_cand_params(X, t)
return params
[ドキュメント] def fit(self, X, t, config):
"""
Fitting function (update parameters)
Parameters
----------
X: numpy.ndarray
N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
t: numpy.ndarray
N dimensional array.
The negative energy of each search candidate (value of the objective function to be optimized).
config: physbo.misc.set_config object
"""
method = config.learning.method
if method == "adam":
adam = learning.adam(self, config)
params = adam.run(X, t)
if method in ("bfgs", "batch"):
bfgs = learning.batch(self, config)
params = bfgs.run(X, t)
self.set_params(params)