physbo.blm.core.model のソースコード

import numpy as np
from .. import inf


[ドキュメント]class model: """ Baysean Linear Model Attributes ========== prior: physbo.blm.prior.gauss prior distribution of weights lik: physbo.blm.lik.gauss kernel nbasis: int number of features in random feature map stats: Tuple auxially parameters for sampling method: str sampling method """ def __init__(self, lik, prior, options={}): self.prior = prior self.lik = lik self.nbasis = self.lik.linear.basis.nbasis self._init_prior(prior) self._set_options(options) self.stats = ()
[ドキュメント] def prepare(self, X, t, Psi=None): """ initializes model by using the first training dataset Parameters ========== X: numpy.ndarray inputs t: numpy.ndarray target (label) Psi: numpy.ndarray feature maps See also ======== physbo.blm.inf.exact.prepare """ if self.method == "exact": inf.exact.prepare(blm=self, X=X, t=t, Psi=Psi) else: pass
[ドキュメント] def update_stats(self, x, t, psi=None): """ updates model by using another training data Parameters ========== x: numpy.ndarray input t: float target (label) psi: numpy.ndarray feature map See also ======== physbo.blm.inf.exact.update_stats """ if self.method == "exact": self.stats = inf.exact.update_stats(self, x, t, psi) else: pass
[ドキュメント] def get_post_params_mean(self): """ calculates posterior mean of weights Returns ======= numpy.ndarray See also ======== physbo.blm.inf.exact.get_post_params_mean """ if self.method == "exact": self.lik.linear.params = inf.exact.get_post_params_mean(blm=self)
[ドキュメント] def get_post_fmean(self, X, Psi=None, w=None): """ calculates posterior mean of model (function) Parameters ========== X: numpy.ndarray inputs Psi: numpy.ndarray feature maps w: numpy.ndarray weight See also ======== physbo.blm.inf.exact.get_post_fmean """ if self.method == "exact": fmu = inf.exact.get_post_fmean(self, X, Psi, w) else: pass return fmu
[ドキュメント] def sampling(self, w_mu=None, N=1, alpha=1.0): """ draws samples of weights Parameters ========== blm: physbo.blm.core.model model w_mu: numpy.ndarray mean of weight N: int the number of samples (default: 1) alpha: float noise for sampling source (default: 1.0) Returns ======= numpy.ndarray samples of weights See also ======== physbo.blm.inf.exact.sampling """ if self.method == "exact": w_hat = inf.exact.sampling(self, w_mu, N, alpha=alpha) else: pass return w_hat
[ドキュメント] def post_sampling(self, Xtest, Psi=None, N=1, alpha=1.0): """ draws samples of mean value of model Parameters ========== Xtest: numpy.ndarray inputs Psi: numpy.ndarray feature maps (default: ``blm.lik.get_basis(Xtest)``) N: int number of samples (default: 1) alpha: float noise for sampling source Returns ======= numpy.ndarray """ if Psi is None: Psi = blm.lik.get_basis(Xtest) w_hat = self.sampling(N=N, alpha=alpha) return Psi.dot(w_hat) + self.lik.linear.bias
[ドキュメント] def predict_sampling(self, Xtest, Psi=None, N=1): """ draws samples from model Parameters ========== Xtest: numpy.ndarray inputs Psi: numpy.ndarray feature map (default: ``blm.lik.get_basis(Xtest)``) N: int number of samples (default: 1) Returns ======= numpy.ndarray """ fmean = self.post_sampling(Xtest, Psi, N=N) return fmean + np.sqrt(self.lik.cov.sigma2) * np.random.randn(Xtest.shape[0], N)
[ドキュメント] def get_post_fcov(self, X, Psi=None, diag=True): """ calculates posterior covariance of model Parameters ========== X: numpy.ndarray inputs Psi: numpy.ndarray feature maps (default: blm.lik.linear.basis.get_basis(X)) diag: bool if True, returns only variances as a diagonal matrix (default: True) Returns ======= numpy.ndarray See also ======== physbo.blm.inf.exact.get_post_fcov """ if self.method == "exact": fcov = inf.exact.get_post_fcov(self, X, Psi, diag=True) else: pass return fcov
def _set_options(self, options): """ read options Parameters ========== options: dict - 'method' : sampling method - 'exact' (default) """ self.method = options.get("method", "exact") def _init_prior(self, prior): """ sets the prior distribution Parameters ========== prior: physbo.blm.prior.gauss if None, prior.gauss(self.nbasis) """ if prior is None: prior = prior.gauss(self.nbasis) self.prior = prior