import numpy as np
import scipy
import physbo.misc as misc
[ドキュメント]def prepare(blm, X, t, Psi=None):
"""
initializes auxiaialy parameters for quick sampling
``blm.stats`` will be updated.
Parameters
==========
blm: physbo.blm.core.model
model
X: numpy.ndarray
inputs
t: numpy.ndarray
target (label)
Psi:
feature maps (default: blm.lik.get_basis(X))
"""
if Psi is None:
Psi = blm.lik.get_basis(X)
PsiT = Psi.transpose()
G = np.dot(PsiT, Psi) * blm.lik.cov.prec
A = G + blm.prior.get_prec()
L = scipy.linalg.cholesky(A, check_finite=False)
b = PsiT.dot(t - blm.lik.linear.bias)
alpha = misc.gauss_elim(L, b)
blm.stats = (L, b, alpha)
[ドキュメント]def update_stats(blm, x, t, psi=None):
"""
calculates new auxiaialy parameters for quick sampling by fast-update
Parameters
==========
blm: physbo.blm.core.model
model
x: numpy.ndarray
input
t: numpy.ndarray
target (label)
psi:
feature map (default: blm.lik.get_basis(X))
Returns
=======
(L, b, alpha): Tuple
new auxially parameters
Notes
=====
``blm.stats[0]`` (L) will be mutated while the others not.
"""
if psi is None:
psi = blm.lik.get_basis(x)
L = blm.stats[0]
b = blm.stats[1] + (t - blm.lik.linear.bias) * psi
misc.cholupdate(L, psi * np.sqrt(blm.lik.cov.prec))
alpha = misc.gauss_elim(L, b)
return (L, b, alpha)
[ドキュメント]def sampling(blm, w_mu=None, N=1, alpha=1.0):
"""
draws samples of weights
Parameters
==========
blm: physbo.blm.core.model
model
w_mu: numpy.ndarray
mean of weight
N: int
the number of samples
(default: 1)
alpha: float
noise for sampling source
(default: 1.0)
Returns
=======
numpy.ndarray
samples of weights
"""
if w_mu is None:
w_mu = get_post_params_mean(blm)
if N == 1:
z = np.random.randn(blm.nbasis) * alpha
else:
z = np.random.randn(blm.nbasis, N) * alpha
L = blm.stats[0]
invLz = scipy.linalg.solve_triangular(
L, z, lower=False, overwrite_b=False, check_finite=False
)
return (invLz.transpose() + w_mu).transpose()
[ドキュメント]def get_post_params_mean(blm):
"""
calculates mean of weight
Parameters
==========
blm: physbo.blm.core.model
Returns
=======
numpy.ndarray
"""
return blm.stats[2] * blm.lik.cov.prec
[ドキュメント]def get_post_fmean(blm, X, Psi=None, w=None):
"""
calculates posterior mean of model
Parameters
==========
blm: physbo.blm.core.model
X: numpy.ndarray
inputs
Psi: numpy.ndarray
feature maps
(default: blm.lik.linear.basis.get_basis(X))
w: numpy.ndarray
weights
(default: get_post_params_mean(blm))
Returns
=======
numpy.ndarray
"""
if Psi is None:
Psi = blm.lik.linear.basis.get_basis(X)
if w is None:
w = get_post_params_mean(blm)
return Psi.dot(w) + blm.lik.linear.bias
[ドキュメント]def get_post_fcov(blm, X, Psi=None, diag=True):
"""
calculates posterior covariance of model
Parameters
==========
blm: physbo.blm.core.model
X: numpy.ndarray
inputs
Psi: numpy.ndarray
feature maps
(default: blm.lik.linear.basis.get_basis(X))
diag: bool
if True, returns only variances as a diagonal matrix
(default: True)
Returns
=======
numpy.ndarray
"""
if Psi is None:
Psi = blm.lik.linear.basis.get_basis(X)
L = blm.stats[0]
R = scipy.linalg.solve_triangular(
L.transpose(),
Psi.transpose(),
lower=True,
overwrite_b=False,
check_finite=False,
)
RT = R.transpose()
if diag is True:
fcov = misc.diagAB(RT, R)
else:
fcov = np.dot(RT, R)
return fcov