physbo.search.discrete.pareto のソースコード

import numpy as np

[ドキュメント]class Rectangles(object): def __init__(self, n_dim, dtype): """ Initilize a set of hyper-rectangle. :param n_dim: dimension of rectangles """ self.n_dim = n_dim self.lb = np.zeros((0, self.n_dim), dtype=dtype) self.ub = np.zeros((0, self.n_dim), dtype=dtype)
[ドキュメント] def add(self, lb, ub): """ Add new rectangles. :param lb: lower bounds of rectangles :param ub: upper bounds of rectangles """ self.lb = np.r_[self.lb, lb] self.ub = np.r_[self.ub, ub]
[ドキュメント]class domination_rule(object): def __init__(self): pass
[ドキュメント] def dominate(self, t1, t2): """domination rule for maximization problem """ return np.all(t1 >= t2) and np.any(t1 > t2)
[ドキュメント]class Pareto(object): def __init__(self, num_objectives, dom_rule = None): self.num_objectives = num_objectives self.front = np.zeros((0, self.num_objectives)) self.front_num = np.zeros(0, dtype = int) self.num_compared = 0 self.dom_rule = dom_rule self.front_updated = False if self.dom_rule is None: self.dom_rule = domination_rule() self.cells = Rectangles(num_objectives, int) self.reference_min = None self.reference_max = None
[ドキュメント] def update_front(self, t): """ Update the non-dominated set of points. Pareto set is sorted on the first objective in ascending order. """ t = np.array(t) if t.ndim == 1: tt = [t] else: tt = t front_updated = False for k in range(len(tt)): point = tt[k] is_front = True for i in range(len(self.front)): if self.dom_rule.dominate(self.front[i], point): is_front = False break if is_front: front_updated = True dom_filter = np.full(len(self.front), True, dtype = bool) for i in range(len(self.front)): if self.dom_rule.dominate(point, self.front[i]): dom_filter[i] = False self.front = np.r_[self.front[dom_filter], point[np.newaxis,:]] self.front_num = np.r_[self.front_num[dom_filter], self.num_compared] self.num_compared += 1 if front_updated: sorted_idx = self.front[:,0].argsort() self.front = self.front[sorted_idx, :] self.front_num = self.front_num[sorted_idx] self.divide_non_dominated_region() self.front_updated = front_updated
[ドキュメント] def export_front(self): return self.front, self.front_num
[ドキュメント] def set_reference_min(self, reference_min = None): if reference_min is None: # estimate reference min point front_min = np.min(self.front, axis=0, keepdims=True) w = np.max(self.front, axis = 0, keepdims=True) - front_min reference_min = front_min - w * 2 / self.front.shape[0] self.reference_min = reference_min
[ドキュメント] def set_reference_max(self, reference_max = None): if reference_max is None: # estimate reference max point front_max = np.max(self.front, axis=0, keepdims=True) w = front_max - np.min(self.front, axis=0, keepdims=True) reference_max = front_max + w * 100 self.reference_max = reference_max
[ドキュメント] def volume_in_dominance(self, ref_min, ref_max, dominance_ratio = False): ref_min = np.array(ref_min) ref_max = np.array(ref_max) v_all = np.prod(ref_max - ref_min) front = np.r_[[ref_min], self.front, [ref_max]] ax = np.arange(self.num_objectives) lb = front[self.cells.lb, ax] ub = front[self.cells.ub, ax] v_non_dom = np.sum(np.prod(ub - lb, axis = 1)) if dominance_ratio: return (v_all - v_non_dom) / v_all else: return v_all - v_non_dom
[ドキュメント] def divide_non_dominated_region(self, force_binary_search = False): # clear rectangles self.cells = Rectangles(self.num_objectives, int) if self.num_objectives == 2 and not force_binary_search: self.__divide_2d() else: self.__divide_using_binary_search()
def __divide_2d(self): """ Divide non-dominated region into vertical rectangles for the case of 2-objectives. Assumes that Pareto set has been sorted on the first objective in ascending order. Notes: In 2-dimensional cases, the second objective has be sorted in decending order. """ n_cells = self.front.shape[0] + 1 lb_idx = [[i, (i + 1) % n_cells] for i in range(n_cells)] ub_idx = [[i + 1, n_cells] for i in range(n_cells)] self.cells.add(lb_idx, ub_idx) def __included_in_non_dom_region(self, p): return np.all([np.any(pf <= p) for pf in self.front]) def __divide_using_binary_search(self): front = np.r_[np.full((1, self.num_objectives), -np.inf), self.front, np.full((1, self.num_objectives), np.inf)] # Pareto front indices when sorted on each dimension's front value in ascending order. # (indices start from 1) # Index 0 means anti-ideal value, index `self.front.shape[0] + 1` means ideal point. front_idx = np.r_[np.zeros((1, self.num_objectives), dtype = int), np.argsort(self.front, axis = 0) + 1, np.full((1, self.num_objectives), self.front.shape[0] + 1, dtype = int)] rect_candidates = [ [np.copy(front_idx[0]), np.copy(front_idx[-1])] ] while rect_candidates: rect = rect_candidates.pop() lb_idx = [front_idx[rect[0][d], d] for d in range(self.num_objectives)] ub_idx = [front_idx[rect[1][d], d] for d in range(self.num_objectives)] lb = [front[lb_idx[d], d] for d in range(self.num_objectives)] ub = [front[ub_idx[d], d] for d in range(self.num_objectives)] if self.__included_in_non_dom_region(lb): self.cells.add([lb_idx], [ub_idx]) elif self.__included_in_non_dom_region(ub): rect_sizes = rect[1] - rect[0] # divide rectangle by the dimension with largest size if np.any(rect_sizes > 1): div_dim = np.argmax(rect_sizes) div_point = rect[0][div_dim] + int(round(rect_sizes[div_dim] / 2.0)) # add divided left rectangle left_ub_idx = np.copy(rect[1]) left_ub_idx[div_dim] = div_point rect_candidates.append([np.copy(rect[0]), left_ub_idx]) # add divided right rectangle right_lb_idx = np.copy(rect[0]) right_lb_idx[div_dim] = div_point rect_candidates.append([right_lb_idx, np.copy(rect[1])])