physbo.search.utility のソースコード

import numpy as np


[ドキュメント]def show_search_results(history, N): n = history.total_num_search index = np.argmax(history.fx[0:n]) if N == 1: print( "%04d-th step: f(x) = %f (action=%d)" % (n, history.fx[n - 1], history.chosen_actions[n - 1]) ) print( " current best f(x) = %f (best action=%d) \n" % (history.fx[index], history.chosen_actions[index]) ) else: print( "current best f(x) = %f (best action = %d) " % (history.fx[index], history.chosen_actions[index]) ) print("list of simulation results") st = history.total_num_search - N en = history.total_num_search for n in range(st, en): print("f(x)=%f (action = %d)" % (history.fx[n], history.chosen_actions[n])) print("\n")
[ドキュメント]def show_search_results_mo(history, N, disp_pareto_set = False): n = history.total_num_search pset, step = history.pareto.export_front() def msg_pareto_set_updated(indent = False): prefix = ' ' if indent else '' if history.pareto.front_updated: print(prefix + 'Pareto set updated.') if disp_pareto_set: print(prefix + 'current Pareto set = %s (steps = %s) \n' % (str(pset), str(step + 1))) else: print(prefix + 'the number of Pareto frontiers = %s \n' % str(len(step))) if N == 1: print('%04d-th step: f(x) = %s (action = %d)' % (n, str(history.fx[n-1]), history.chosed_actions[n-1])) msg_pareto_set_updated(indent=True) else: msg_pareto_set_updated() print('list of simulation results') st = history.total_num_search - N en = history.total_num_search for n in range(st, en): print('f(x) = %s (action = %d)' % (str(history.fx[n-1]), history.chosed_actions[n-1])) print('\n')
[ドキュメント]def show_interactive_mode(simulator, history): if simulator is None and history.total_num_search == 0: print("interactive mode stars ... \n ")
[ドキュメント]def length_vector(t): N = len(t) if hasattr(t, "__len__") else 1 return N
[ドキュメント]def is_learning(n, interval): if interval == 0: return True if n == 0 else False elif interval > 0: return True if np.mod(n, interval) == 0 else False else: return False