import numpy as np
[ドキュメント]class variable(object):
def __init__(self, X=None, t=None, Z=None):
"""
Parameters
----------
X: numpy array
N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of each search candidate.
t: numpy array
N dimensional array. The negative energy of each search candidate (value of the objective function to be optimized).
Z:
"""
self.X = X
self.Z = Z
self.t = t
[ドキュメント] def get_subset(self, index):
"""
Getting subset of variables.
Parameters
----------
index: int or array of int
Index of selected action.
Returns
-------
variable: physbo.variable
"""
temp_X = self.X[index, :] if self.X is not None else None
temp_t = self.t[index] if self.t is not None else None
temp_Z = self.Z[index, :] if self.Z is not None else None
return variable(X=temp_X, t=temp_t, Z=temp_Z)
[ドキュメント] def delete(self, num_row):
"""
Deleting variables of X, t, Z whose indexes are specified by num_row.
Parameters
----------
num_row: numpy array
Index array to be deleted.
Returns
-------
"""
self.delete_X(num_row)
self.delete_t(num_row)
self.delete_Z(num_row)
[ドキュメント] def add(self, X=None, t=None, Z=None):
"""
Adding variables of X, t, Z.
Parameters
----------
X: numpy array
N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of each search candidate.
t: numpy array
N dimensional array. The negative energy of each search candidate (value of the objective function to be optimized).
Z
Returns
-------
"""
self.add_X(X)
self.add_t(t)
self.add_Z(Z)
[ドキュメント] def delete_X(self, num_row):
"""
Deleting variables of X whose indexes are specified by num_row.
Parameters
----------
num_row: numpy array
Index array to be deleted.
Returns
-------
"""
if self.X is not None:
self.X = np.delete(self.X, num_row, 0)
[ドキュメント] def delete_t(self, num_row):
"""
Deleting variables of t whose indexes are specified by num_row.
Parameters
----------
num_row: numpy array
Index array to be deleted.
Returns
-------
"""
if self.t is not None:
self.t = np.delete(self.t, num_row)
[ドキュメント] def delete_Z(self, num_row):
"""
Deleting variables of Z whose indexes are specified by num_row.
Parameters
----------
num_row: numpy array
Index array to be deleted.
Returns
-------
"""
if self.Z is not None:
self.Z = np.delete(self.Z, num_row, 0)
[ドキュメント] def add_X(self, X=None):
"""
Adding variable X. If self.X is None, self.X is set as X.
Parameters
----------
X: numpy array
N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of each search candidate.
Returns
-------
"""
if X is not None:
if self.X is not None:
self.X = np.vstack((self.X, X))
else:
self.X = X
[ドキュメント] def add_t(self, t=None):
"""
Adding variable t. If self.t is None, self.t is set as t.
Parameters
----------
t: numpy array
N dimensional array. The negative energy of each search candidate (value of the objective function to be optimized).
Returns
-------
"""
if not isinstance(t, np.ndarray):
t = np.array([t])
if t is not None:
if self.t is not None:
self.t = np.hstack((self.t, t))
else:
self.t = t
[ドキュメント] def add_Z(self, Z=None):
"""
Adding variable Z. If self.Z is None, self.Z is set as Z.
Parameters
----------
Z
Returns
-------
"""
if Z is not None:
if self.Z is None:
self.Z = Z
else:
self.Z = np.vstack((self.Z, Z))
[ドキュメント] def save(self, file_name):
"""
Saving variables X, t, Z to the file.
Parameters
----------
file_name: str
A file name for saving variables X, t, Z using numpy.savez_compressed.
Returns
-------
"""
np.savez_compressed(file_name, X=self.X, t=self.t, Z=self.Z)
[ドキュメント] def load(self, file_name):
"""
Loading variables X, t, Z from the file.
Parameters
----------
file_name: str
A file name for loading variables X, t, Z using numpy.load.
Returns
-------
"""
data = np.load(file_name, allow_pickle=True)
self.X = data["X"]
self.t = data["t"]
self.Z = data["Z"]