physbo.gp.core.learning module¶
-
class
physbo.gp.core.learning.
adam
(gp, config)[ソース]¶ ベースクラス:
physbo.gp.core.learning.online
default
-
get_one_update
(params, X, t)[ソース]¶ - パラメータ
params (numpy.ndarray) -- Parameters for optimization. Array of real elements of size (n,), where ‘n’ is the number of independent variables.
X (numpy.ndarray) -- N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
t (numpy.ndarray) -- N-dimensional vector that represents the corresponding negative energy of search candidates.
-
-
class
physbo.gp.core.learning.
batch
(gp, config)[ソース]¶ ベースクラス:
object
basis class for batch learning
-
init_params_search
(X, t)[ソース]¶ - パラメータ
X (numpy.ndarray) -- N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
t (numpy.ndarray) -- N-dimensional vector that represents the corresponding negative energy of search candidates.
- 戻り値
The parameters which give the minimum marginal likelihood.
- 戻り値の型
numpy.ndarray
-
one_run
(params, X, t, max_iter=None)[ソース]¶ - パラメータ
params (numpy.ndarray) -- Initial guess for optimization. Array of real elements of size (n,), where ‘n’ is the number of independent variables.
X (numpy.ndarray) -- N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
t (numpy.ndarray) -- N-dimensional vector that represents the corresponding negative energy of search candidates.
max_iter (int) -- Maximum number of iterations to perform.
- 戻り値
The solution of the optimization.
- 戻り値の型
numpy.ndarray
-
run
(X, t)[ソース]¶ Performing optimization using the L-BFGS-B algorithm
- パラメータ
X (numpy.ndarray) -- N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
t (numpy.ndarray) -- N-dimensional vector that represents the corresponding negative energy of search candidates.
- 戻り値
The solution of the optimization.
- 戻り値の型
numpy.ndarray
-
-
class
physbo.gp.core.learning.
online
(gp, config)[ソース]¶ ベースクラス:
object
base class for online learning
-
disp_marlik
(params, eval_X, eval_t, num_epoch=None)[ソース]¶ Displaying marginal likelihood
- パラメータ
params (numpy.ndarray) -- Parameters for optimization. Array of real elements of size (n,), where ‘n’ is the number of independent variables.
eval_X (numpy.ndarray) -- N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
eval_t (numpy.ndarray) -- N-dimensional vector that represents the corresponding negative energy of search candidates.
num_epoch (int) -- Number of epochs
-
init_params_search
(X, t)[ソース]¶ Initial parameter searchs
- パラメータ
X (numpy.ndarray) -- N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
t (numpy.ndarray) -- N-dimensional vector that represents the corresponding negative energy of search candidates.
- 戻り値
The parameter which gives the minimum likelihood.
- 戻り値の型
numpy.ndarray
-
one_run
(params, X, t, max_epoch=None, is_disp=False)[ソース]¶ - パラメータ
params (numpy.ndarray) -- Parameters for optimization. Array of real elements of size (n,), where ‘n’ is the number of independent variables.
X (numpy.ndarray) -- N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
t (numpy.ndarray) -- N-dimensional vector that represents the corresponding negative energy of search candidates.
max_epoch (int) -- Maximum candidate epochs
- 戻り値
The solution of the optimization.
- 戻り値の型
numpy.ndarray
-
run
(X, t)[ソース]¶ Run initial search and hyper parameter running.
- パラメータ
X (numpy.ndarray) -- N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
t (numpy.ndarray) -- N-dimensional vector that represents the corresponding negative energy of search candidates.
- 戻り値
The solution of the optimization.
- 戻り値の型
numpy.ndarray
-