physbo.search.score module

physbo.search.score.EHVI(fmean, fstd, pareto)[ソース]

Calculate Expected Hyper-Volume Improvement (EHVI).

Reference: (Couckuyt et al., 2014) Fast calculation of multiobjective probability of improvement and expected improvement criteria for Pareto optimization

physbo.search.score.EI(predictor, training, test, fmax=None)[ソース]

Maximum expected improvement.

パラメータ
  • predictor (predictor object) -- Base class is defined in physbo.predictor.

  • training (physbo.variable) -- Training dataset. If already trained, the model does not use this.

  • test (physbo.variable) -- Inputs

  • fmax (float) -- Max value of posterior probability distribution. If not set fmax, the max value of posterior mean of weights is set.

戻り値

score

戻り値の型

numpy.ndarray

physbo.search.score.HVPI(fmean, fstd, pareto)[ソース]

Calculate Hypervolume-based Probability of Improvement (HVPI).

Reference: (Couckuyt et al., 2014) Fast calculation of multiobjective probability of improvement and expected improvement criteria for Pareto optimization

physbo.search.score.PI(predictor, training, test, fmax=None)[ソース]

Maximum probability of improvement.

パラメータ
  • predictor (predictor object) -- Base class is defined in physbo.predictor.

  • training (physbo.variable) -- Training dataset. If already trained, the model does not use this.

  • test (physbo.variable) -- Inputs

  • fmax (float) -- Max value of posterior probability distribution. If not set fmax, the max value of posterior mean of weights is set.

戻り値

score

戻り値の型

numpy.ndarray

physbo.search.score.TS(predictor, training, test, alpha=1)[ソース]

Thompson sampling (See Sec. 2.1 in Materials Discovery Volume 4, June 2016, Pages 18-21)

パラメータ
  • predictor (predictor object) -- Base class is defined in physbo.predictor.

  • training (physbo.variable) -- Training dataset. If already trained, the model does not use this.

  • test (physbo.variable) -- Inputs

  • alpha (float) -- noise for sampling source (default: 1.0)

戻り値

score

戻り値の型

numpy.ndarray

physbo.search.score.TS_MO(predictor_list, training_list, test, alpha=1, reduced_candidate_num=None)[ソース]