Cif2x Documentation
Release 1.1.0

ISSP, University of Tokyo

Sep 14, 2024

Contents

1 Introduction 1
1.1 Whatis cif2X? e e e e e 1
1.2 LACeNSE o ot e e e e e e e e e e e e e e e e e 1
1.3 ContribUtors e e e e e e e e e e e e e e e e e e e 1
1.4 Release hiStory o o e e e e e e e e e e 2
1.5 Copyright o e e e e e e e 2
1.6 Operating environment ittt e e e e e e e e e e 2
2 Installation and basic usage 3
3 Tutorial 6
3.1 Prepare aninput parameterfile e e e e e e 6
3.2 Generatinginput files L. e e e e e e e e e e 8
3.3 Specifying parameter SEts oL e 8
4 Command reference 9
4.1 Cif2X L e e 9
5 File format 11
5.1 Inputparameter file e e e e e e e e 11
5.2 Parameters for Quantum ESPRESSO 13
5.3 Parameters for VASP L. 14
5.4 Parameters for OpenMX 16
5.5 Parameters for AkaiKKR L e e e 16
6 Extension guide 17
6.1 Adding modes of Quantum ESPRESSO o 17
7 A tool to retrieve crystallographic data from databases (getcif) 19
7.1 IntroducCtion e e e e e e e e e e e e e e e e e e e 19
7.2 Tutorial e e e e e e e e e e e 19
7.3 Commandreference e e e e e e e e 22
7.4 Fileformat e e 23
7.5 Parameter List e 25

Chapter 1

Introduction

1.1 What is cif2x?

In recent years, the use of machine learning for predicting material properties and designing substances (known as
materials informatics) has gained considerable attention. The accuracy of machine learning depends heavily on the
preparation of appropriate training data. Therefore, the development of tools and environments for the rapid generation
of training data is expected to contribute significantly to the advancement of research in materials informatics.

Cif2x is a tool that generates input files for first-principles calculations from cif files. It constructs parts that vary
depending on the type of material and computational conditions from crystal structure data, using input parameters as
a template. It is capable of generating multiple input files tailored to specific computational conditions. Currently, it
supports VASP, Quantum ESPRESSO, OpenMX, and AkaiKKR.

1.2 License

The distribution of the program package and the source codes for cif2x follow GNU General Public License version 3
(GPL v3) or later.

1.3 Contributors

This software was developed by the following contributors.

* Developers

Kazuyoshi Yoshimi (The Instutite for Solid State Physics, The University of Tokyo)

Tatsumi Aoyama (The Instutite for Solid State Physics, The University of Tokyo)

Yuichi Motoyama (The Instutite for Solid State Physics, The University of Tokyo)

Masahiro Fukuda (The Instutite for Solid State Physics, The University of Tokyo)

Kota Ido (The Instutite for Solid State Physics, The University of Tokyo)

Tetsuya Fukushima (The National Institute of Advanced Industrial Science and Technology (AIST))

Shusuke Kasamatsu (Yamagata University)

Takashi Koretsune (Tohoku University)

https://www.vasp.at
https://www.quantum-espresso.org
http://www.openmx-square.org
http://kkr.issp.u-tokyo.ac.jp

Cif2x Documentation, Release 1.1.0

* Project Corrdinator

— Taisuke Ozaki (The Instutite for Solid State Physics, The University of Tokyo)

1.4 Release history

ver.1.1.0
Released on 2024/09/14

ver.1.0.1
Released on 2024/03/31

ver.1.0.0
Released on 2024/03/19

ver.1.0-alpha
Released on 2023/12/28

1.5 Copyright
© 2023- The University of Tokyo. All rights reserved.

This software was developed with the support of* Project for advancement of software usability in materials science ”
of The Institute for Solid State Physics, The University of Tokyo.

1.6 Operating environment

This tool was tested on the following platforms:

* Ubuntu Linux + python3

2 Chapter 1. Introduction

Chapter 2

Installation and basic usage

Prerequisite

Input file generator for first-principles calculation cif2x included in HTP-tools requires the following
programs and libraries:

* python 3.x
* pymatgen module
e ruamel.yaml module
* f90nml module
* ge-tools module
* numpy module
 pandas module
* monty module
* OpenBabel module (optional)
* AkaiKKRPythonUtil module
For A tool to retrieve crystallographic data from databases getcif, the additional library is required:

e mp-api module

Official pages

* GitHub repository
Downloads

cif2x can be downloaded by the following command with git:

[$ git clone https://github.com/issp-center-dev/cif2x.git

Installation

Once the source files are obtained, you can install cif2x by running the following command. The required
libraries will also be installed automatically at the same time.

$ cd ./cif2x
$ python3 -m pip install .

https://github.com/issp-center-dev/cif2x

Cif2x Documentation, Release 1.1.0

The executable files cif2x and getcif will be installed. You may need to add --user option next to
install keyword above in case you are not allowed to install packages system-wide.

AkaiKKRPythonUtil module need to be installed separately. The source package is available from the
repository. Then follow the steps below to install the module along with the required seaborn module:

$ git clone https://github.com/AkaiKKRteam/AkaiKKRPythonUtil.git
$ cd ./AkaiKKRPythonUtil/library/PyAkaiKKR

$ python3 -m pip install .

$ python3 -m pip install seaborn

Directory structure

|-- LICENSE

| -- README.md

|-- pyproject.toml

|-- docs/

| [-- ja/

| |-- en/

| |-- tutorial/

|-- src/

| |-- cif2x/

| |-- __init__.py

| | -- main.py

| |-- cif2struct.py

| | -- struct2ge.py

| [-- qe/

| | [-- __init__.py
| | | -- calc_mode.py
| I | -- cards.py

| | | -- content.py
| I |-- geutils.py
| I |-- tools.py

| | -- struct2vasp.py
| | -- struct2openmx.py
| | -- openmx/

| [[-- __init__.py

| I |-- vps_table.py
| | -- struct2akaikkr.py
| | -- akaikkr/

| | | -- make_input.py
| [| -- read_input.py
| | | -- run_cif2kkr.py
| |-- utils.py

| |-- getcif/

| |[-- __init__.py

| | -- main.py

| -- sample/

Basic usage

cif2x is a tool to generate a set of input files for first-principles calculation software. It takes an input
parameter file as a template, and generates parameter items that may vary by materials and calculation con-
ditions from crystallographic data. In the present version, cif2x supports Quantum ESPRESSO, VASP,

4 Chapter 2. Installation and basic usage

https://github.com/AkaiKKRteam/AkaiKKRPythonUtil
https://github.com/AkaiKKRteam/AkaiKKRPythonUtil

Cif2x Documentation, Release 1.1.0

OpenMX, and AkaiKKR.
1. Prepare input parameter file

First, you need to create an input parameter file in YAML format that describes contents of
the input file to be generated for the first-principles calculation software.

2. Prepare crystal structure files and pseudo-potential files

The crystal structure data need to be prepared for the target materials. The file format is
CIF, POSCAR, xfs, or those supported by pymatgen.

For Quantum ESPRESSO, the pseudo-potential files and the index file in CSV format need
to be placed. Their locations are specified in the input parameter file.

For VASP, the location of the pseudo-potential files will be specified in a file ~/.config/
.pmgrc.yaml or by an environment variable. It may be specified in the input parameter
file.

3. Run command

Run cif2x command with the input parameter file and the crystal structure data as argu-
ments. To generate input files for Quantum ESPRESSO, the target option -t QE should
be specified. The option turns to -t VASP for VASP, -t OpenMX for OpenMX, and -t
AkaiKKR for AkaiKKR.

[$ cif2x -t QE input.yaml material.cif }

Chapter 3

Tutorial

The procedure to use the input file generator cif2x for first-principles calculation software consists of preparing an
input parameter file, crystal structure data, and pseudo-potential files, and running the program cif2x. In the current
version, the supported software includes Quantum ESPRESSO, VASP, OpenMX, and AkaiKKR. In this tutorial, we
will explain the steps along a sample for Quantum ESPRESSO in docs/tutorial/cif2x.

3.1 Prepare an input parameter file

An input parameter file describes the content of input files for the first-principles calculation software. An example is
presented below. It is a text file in YAML format that contains options to crystal structure data, and contents of the input
file used as an input for the first-principle calculation. See file format section for the details of specification.

In YAML format, parameters are given in dictionary form as keyword: value, where value is a scalar such as a
number or a string, or a set of values enclosed in [] or listed in itemized form, or a nested dictionary.

structure:
use_ibrav: false
tolerance: 0.05

optional:
pseudo_dir: ./pseudo
pp_file: ./pseudo/pp_psl_pbe_rrkjus.csv

tasks:

- mode: scf
output_file: scf.in
output_dir: scf
template: scf.in_tmpl
content:

namelist:
control:
prefix: pwscf
pseudo_dir:
outdir: ./work
system:
ecutwfc:

(continues on next page)

Cif2x Documentation, Release 1.1.0

(continued from previous page)

ecutrho:
CELL_PARAMETERS:
ATOMIC_SPECIES:
ATOMIC_POSITIONS:
option: crystal

K_POINTS:
option: automatic
grid: [s8,8,8]

The input parameter file consists of structure, optional, and tasks sections. The structure section specifies
options to the crystal structure data. The optional section holds global settings concerning the pseudo-potentials.

The tasks section describes inputs for the first-principles calculations. In case of generating multiple files for a series
of calculations, the tasks section takes a list of parameter sets. For each set, the calculation type is specified by the
mode parameter: scf and nscf are supported as modes, as well as arbitrary modes for generic output.

The content of the output is given in content section. The input files of Quantum ESPRESSO are composed of the
parts in namelist format of Fortran90 starting from &keyword, and the blocks called cards that start with keywords such
as K_POINTS and end with blank lines. The content block holds namelist and cards in a form of nested dictionary.
Basically, the specified items are written to the input files as-is, except for several cases. If a keyword is left blank, its
value will be obtained form the crystal structure data or other sources.

Besides, templates of the input files can be used. The content of the file given by the template keyword is con-
sidered as input data along with the entries in content block. When the entries of the same keywords appear both,
those of the input parameter files will be used. Therefore, it is possible to use template files and overwrite some
entries by the input parameter file as needed. In the present example, the file (scf.in_tmpl) shown below is read
as a template, and the entries on cutoff parameters as well as cards of CELL_PARAMETER, ATOMIC_SPECIES,
ATOMIC_POSITIONS, K_POINTS are generated from the crystal structure data and pseudo-potential files. It is noted
that the values of ecutwfc and ecutrho are overwritten by the empty lines.

&control
calculation = 'scf'
prefix = 'pwscf'
pseudo_dir = './pseudo’
outdir = './work'
tstress = .true.
tprnfor = .true.

/

&system

ecutwfc = 36.0
ecutrho = 180.0

occupations = 'smearing'
smearing = 'm-p’
degauss = 0.01
noncolin = .true.
nspin = 2
/
&electrons

(continues on next page)

3.1. Prepare an input parameter file 7

Cif2x Documentation, Release 1.1.0

(continued from previous page)
missing_beta = 0.1
conv_thr = 1e-08

3.2 Generating input files

The program cif2x is executed with the input parameter file (input.yaml) and crystal structure data
(Co3SnS2_nosym.cif) as follows.

[$ cif2x -t QE input.yaml Co3SnS2_nosym.cif

The required pseudo-potential files should be placed in the directory ./pseudo, and the index file for the pseudo-
potential should be prepared as . /psudo/pp_psl_pbe_rrkjus.csv.

Run cif2x and a set of input files for Quantum ESPRESSO will be created. The output file is specified by output_file
parameter of the input parameter file, and stored in the directory given by output_dir. In this example, the input file
for SCF calculation is created as . /scf/scf.in.

3.3 Specifying parameter sets

In some cases, a series of input files should be generated with varying their parameter values. For example, the conver-
gence is examined by modifying the cutoff values or grid resolution of k points. The input parameter can be given a list
or a range of values, and the input files for every combination from the choices of parameter values are generated and
stored in separate directories. To specify parameter set, a special syntax ${. ..} is adopted.

content:
K_POINTS:
option: automatic
grid: ${ [[4,4,4], [8,8,8], [12,12,12]] }

When K_POINTS is given as above, the input files having the grid value to be [4,4,4], [8,8,8], [12,12,12] will
be generated in the sub-directories, 4x4x4/, 8x8x8/, 12x12x12/, respectively.

8 Chapter 3. Tutorial

Chapter 4

Command reference

4.1 cif2x

Generate input files for first-principles calculation software

SYNOPSIS:

cif2x [-v][-q] -t target input_yaml material.cif
cif2x -h
cif2x --version

DESCRIPTION:

This program reads an input parameter file specified by input_yaml and a crystal data file specified by
material.cif, and generates a set of input files for first-principles calculation software. In the current
version, the supported software includes Quantum ESPRESSO, VASP, and OpenMX. It takes the following
command line options.

s -v

increases verbosity of the runtime messages. When specified multiple times, the program becomes
more verbose.

*-q

decreases verbosity of the runtime messages. It cancels the effect of -v option, and when specified
multiple times, the program becomes more quiet.

* -t target

specifies the target first-principles calculation software. The supported software for target is listed as
follows:

— QE, espresso, quantum_espresso: generates input files for Quantum ESPRESSO.

VASP: generates input files for VASP.
OpenlMX: generates input files for OpenMX.

AkaiKKR: generates input files for AkaiKKR.

e input_yaml

specifies an input parameter file in YAML format.

Cif2x Documentation, Release 1.1.0

e material.cif

specifies crystal structure data file. It is in CIF (Crystallographic Information Framework) format, or
other format supported by pymatgen.

* -h
displays help and exits.
* —-version

displays version information.

10 Chapter 4. Command reference

Chapter 5

File format

5.1 Input parameter file

An input parameter file describes information necessary to generate input files for first-principles calculation software
by cif2x. It should be given in YAML format, and consist of the following sections.

1. structure section: describes how to handle crystal structure data.
2. optional section: describes pseudo-potential files, and symbol definitions for reference feature of YAML.

3. tasks section: describes contents of input files.

5.1.1 structure

use_ibrav (default value: false)

This parameter specifies whether ibrav parameter is used for Quantum ESPRESSO as the
input of the crystal structure. When it is set to true, the lattice is transformed to match the
convention of Quantum ESPRESSO, and the lattice parameters a, b, c, cosab, cosac, and
cosbc are written to the input file as needed.

tolerance (default value: 0.01)

This parameter specifies the tolerance in the difference between the reconstructed Structure data
and the original data when use_ibrav is set to true.

supercell (default value: none)

This parameter specifies the size of supercell, when it is adopted, in the form of [n;, ny, n.].

11

Cif2x Documentation, Release 1.1.0

5.1.2 optional

This section contains global settings needed for the first-principles calculation software. The available parameters are
described in the corresponding sections below.

5.1.3 tasks

This section defines contents of the input files. It is organized as a list of blocks, each corresponding to an input file, to
allow for generating a set of input files for an input. The terms described in each block are explained in the following.

mode (Quantum ESPRESSO)

This parameter specifies the type of calculation. In the current version, the supported mode
includes scf and nscf for pw.x of Quantum ESPRESSO. If an unsupported mode is specified,
the settings in content will be exported as is.

output_file (Quantum ESPRESSO)
This parameter specifies the file name of the output.
output_dir

This parameter specifies the directory name of the output. The default value is the current
directory.

content

This parameter describes the content of the output. For Quantum ESPRESSO, it contains the
namelist data (blocks starting from &system, &control, etc.) in namelist block, and other
card data (such as K_POINTS) as individual blocks. Some card data may take parameters.

template (Quantum ESPRESSO)
template_dir (VASP)

These parameters specifies the template file and the template directory for the input files, re-
spectively. If they are not given, templates will not be used. The content of the template file is
merged with those of content. The entries in the template file will be superseded by those of
content if the entries of the same keys appear both.

5.1.4 Specifying parameter set

An input parameter may be given a list or range of parameters. In this case, a separate directory is created for every
combination of parameters to store the generated input files. A special syntax ${. ..} is used to specify the parameter
set as follows:

e alist: ${[A, B, ... 1}
a set of parameter values is described as a Python list. Each entry may be a scalar value, or a list of values.
e arange: ${range(N)}, ${range(start, end, step)}

arange of parameter is given by the keyword range. The former specifies the values from 0 to N-1, and the latter
from start to end with every step. (If step is omitted, it is assumed to be 1.)

12 Chapter 5. File format

Cif2x Documentation, Release 1.1.0

5.2 Parameters for Quantum ESPRESSO

The entries of optional section and content part of the tasks section specific to Quantum ESPRESSO are explained

below. In the current version, scf mode and nscf mode of pw.x are supported.

5.2.1 optional section

pp_file

This parameter specifies the index file in CSV format that relates the element type and the
pseudo-potential file. This file contains the following columns: element name, type of pseudo-
potential, nexclude, orbitals. An example line is given as:

[Fe,pbe—spn—rrkjus_psl.®.2.1,4,spd]

The name of the pseudo-potential file corresponding to the above example reads Fe.pbe-spn-
rrkjus_psl.0.2.1.UPF .

cutoff_file

This parameter specifies the index file in CSV format that relates the pseudo-potential file and the
cutoff values. This file contains the following columns: name of pseudo-potential file, ecutwfc
value, ecutrho value.

pseudo_dir

This parameter specifies the name of the directory that holds pseudo-potential files. It is used
when the cutoff values are obtained from the pseudo-potential files. It is indenepent from the
pseudo_dir parameter in the input files for Quantum ESPRESSO.

5.2.2 content

namelist

* The lattice specifications in &system block will be superseded according to use_ibrav parameter
in the structure section.

— use_ibrav = false: ibrav is set to 0, and the lattice parameters including a, b, ¢, cosab,
cosac, cosbc, celldm are removed.

— use_ibrav = true: ibrab is set to the index of Bravais lattices obtained from the crystal
structure data. The Structure data will be reconstructed to match the convention of Quantum
ESPRESSO.

* nat (the number of atoms) and ntyp (the number of element types) will be superseded by the values
obtained from the crystal structure data.

* The cutoff values ecutwfc and ecutrho are obtained from the pseudo-potential files if these param-
eters are left blank.

CELL_PARAMETERS

* This block will not be generated if use_ibrav is set to true. Otherwise, the lattice vectors are
exported in units of angstrom.

* The information of the lattice vectors are obtained from the crystal structure data. When the data
field is defined and contains a 3x3 matrix, that value will be used for the set of lattice vectors instead.

5.2. Parameters for Quantum ESPRESSO

13

Cif2x Documentation, Release 1.1.0

ATOMIC_SPECIES
 This block exports a list of atom species, atomic mass, and the file name of the pseudo-potential data.

* The information of the atoms are obtained from the crystal structure data. The file names of the
pseudo-potential data are referred from the CSV-formatted index file specified by pp_list parameter.

* When the data field is defined and contains the required data, these values will be used instead.
ATOMIC_POSITIONS
* This block exports the atomic species and their fractional coordinates.

* When ignore_species is given to specify an atomic species or a list of species, the values of
if_pos for these species will be set to 8. It is used for MD or structure relaxations.

* When the data field is defined and contains the required data, these values will be used instead.
K_POINTS

* This block exports the information of k points. The type of the output is specified by the option
parameter that takes one of the following:

— gamma: uses I" point.

— crystal: generates a list of k points in mesh pattern. The mesh width is given by the grid
parameter, or derived from the vol_density or k_resolution parameters.

— automatic: generates a mesh of k points. It is given by the grid parameter, or derived from the
vol_density ork_resolution parameters. The shift is obtained from the kshifts parameter.

* The mesh width is determined in the following order:

— the grid parameter, specified by a list of n;,n,,n., or a scalar value n. For the latter, n, =
ny = n, = n is assumed.

— derived from the vol_density parameter.
— derived from the k_resolution parameter, whose default value is 0.15.

* When the data field is defined and contains the required data, these values will be used.

5.3 Parameters for VASP

The entries of optional section and content part of the tasks section specific to VASP are explained below.

5.3.1 optional

The type and the location of pseudo-potential files are specified.

According to pymatgen, the pseudo-potential files are obtained from PMG_VASP_PSP_DIR/functional/POTCAR.{element}(.gz)
or PMG_VASP_PSP_DIR/functional/{element}/POTCAR, where PMG_VASP_PSP_DIR points to the directory and it is

given in the configuration file ~/.config/.pmgrc.yaml or by the environment variable of the same name. functional

refers to the type of the pseudo-potential, whose value is predefined as POT_GGA_PAW_PBE, POT_LDA_PAW, etc.

pseudo_functional

This parameter specifies the type of the pseudo-potential. The relation to the functional value
above is defined in the table of pymatgen, for example, by PBE to POT_GGA_PAW_PBE, or by LDA
to POT_LDA_PAW, or in a similar manner.

14 Chapter 5. File format

Cif2x Documentation, Release 1.1.0

When the pseudo_dir parameter is specified, it is used as the directory that holds the pseudo-potential files, ignoring
the convention of pymatgen.

psuedo_dir

This parameter specifies the directory that holds the pseudo-potential files. The
paths to the pseudo-potential file turn to pseudo_dir/POTCAR.{element}(.gz), or
pseudo_dir/{element}/POTCAR.

5.3.2 tasks

The template files are assumed to be placed in the directory specified by the template_dir parameter by the names
INCAR, KPOINTS, POSCAR, and POTCAR. The missing files will be ignored.

5.3.3 content

incar

* This block contains parameters described in the INCAR file
kpoints

* type

The type parameter describes how KPOINTS are specified. The following values are allowed, with
some types accepting parameters. See pymatgen.io.vasp manual for further details.

automatic

parameter: grid
— gamma_automatic
parameter: grid, shift
— monkhorst_automatic
parameter: grid, shift
— automatic_density
parameter: kppa, force_gamma
— automatic_gamma_density
parameter: grid_density
— automatic_density_by_vol
parameter: grid_density, force_gamma
— automatic_density_by_lengths
parameter: length_density, force_gamma
— automatic_linemode

parameter: division, path_type (corresponding to the path_type parameter of High-
SymmKpath.)

5.3. Parameters for VASP 15

Cif2x Documentation, Release 1.1.0

5.4 Parameters for OpenMX

The entries of optional section and content part of the tasks section specific to OpenMX are explained below.

5.4.1 optional

data_path

This parameter specifies the name of directory that holds files for pseudo-atomic orbitals and
pseudo-potentials. It corresponds to the DATA.PATH parameter.

5.4.2 content

precision

This parameter specifies the set of pseudo-atomic orbitals listed in Tables 1 and 2 of Section
10.6 of the OpenMX manual. It is one of quick, standard, or precise. The default value is
quick.

5.5 Parameters for AkaiKKR

The entries of optional section and content part of the tasks section specific to AkaiKKR are explained below.

5.5.1 optional

workdir

This parameter specifies the directory in which temporal files are stored. If it is not given, /tmp
or the value of the environment variable TMPDIR is used.

5.5.2 content

The content part contains the input parameters of AkaiKKR. A blank is written to the input file for an unspecified
parameter, to which the default value defined in AkaiKKR will be assumed. The parameter values listed below are
replaced by the values obtained from the crystal structure data.

* brvtyp, except when it is set to aux (or a string that contains aux).

* lattice parameters, a, c/a, b/a, alpha, beta, gamma, rl, r2, r3.

* type information, ntyp, type, ncmp, rmt, field, mx1, anclr, conc.
¢ element information, natm, atmicx, atmtyp.

For rmt and field, the values specified in the input parameter file will be used only when they are lists having the
same number of elements as ntyp.

16 Chapter 5. File format

Chapter 6

Extension guide

6.1 Adding modes of Quantum ESPRESSO

In order to add supports to modes of Quantum ESPRESSO, the mapping between the modes and the transformation
classes should be added to create_modeproc() function in src/cif2x/qe/calc_mode.py.

def create_modeproc(mode, qe):
if mode in ["scf", "nscf"]:
modeproc = QEmode_pw(qe)
else:
modeproc = QEmode_generic(ge)
return modeproc

The transformation functionality for each mode is provided as a derived class of QEmode_base class. This class im-
plements methods update_namelist () for updating the namelist block, and update_cards () for generating data of
card blocks. In the current version, two classes are provided: QEmode_pw class for scf and nscf calculations of pw.x,
and QEmode_generic class for generating output as-is.

class QEmode_base:
def __init__(self, qe):
def update_namelist(self, content):
def update_cards(self, content):

For the namelist, the transformation class generates values for blank entries from crystal structure data and other sources.
It may also force to set values such as the lattice parameters that are determined from the crystal structure data, or those
that must be specified consistently with other parameters. The functions are provided for each mode separately.

For card blocks, a function is provided for each card, and the mapping between the card type and the function is given
in the card_table variable. The method update_cards () in the base class picks up and runs the function associated
to the card, and updates the content of the card. Of course, a new update_cards() function may be defined.

self.card_table = {
'CELL_PARAMETERS': generate_cell_parameters,
"ATOMIC_SPECIES': generate_atomic_species,
"ATOMIC_POSITIONS': generate_atomic_positions,
'"K_POINTS': generate_k_points,

17

Cif2x Documentation, Release 1.1.0

The functions for cards are gathered in src/cif2x/qe/cards.py with the function names as generate_{card
name}. These functions takes parameters for card blocks as argument, and returns a dictionary containing the card
name, the options, and the data field.

18 Chapter 6. Extension guide

Chapter 7

A tool to retrieve crystallographic data from
databases (getcif)

7.1 Introduction

getcif is a tool to retrieve crystallographic information and other properties of materials from databases. The latest
version of getcif provides access to Materials Project database. Users can search database and obtain information by
specifying symmetry, composition, or physical properties of materials.

7.2 Tutorial

In this tutorial, the procedure to use the database query tool getcif is described for searching and obtaining crystal-
lographic information from databases for the materials science. It consists of getting an API key, preparing an input
parameter file, and running the getcif program. We will explain the steps along an example of searching and obtaining
information for ABO3-type materials provided in the docs/tutorial/getcif directory.

7.2.1 Getting an API key

In order to access the Materials Project database via API, users need to register to the Materials Project and obtain an
API key. Visit the Materials Project website https://next-gen.materialsproject.org, create an account and do Login. An
API key is automatically generated on registration and shown in the user dashboard. The API key should be kept safe
and not shared with others.

The API key is made available to getcif by one of the following ways:

(a) storing in the pymatgen configuration file by typing in as follows:

[$ pmg config --add PMG_MAPI_KEY <API_KEY> J

or editing the file ~/.config/.pmgrc to include the following:

[PMG_MAPI_KEY : <API_KEY> }

(b) setting to an environment variable by:

19

https://next-gen.materialsproject.org

Cif2x Documentation, Release 1.1.0

$ MP_API_KEY="<API_KEY>"
$ export MP_API_KEY

(c) storing the API key to a file located in the directory where getcif is run. The default value of the file name is
materials_project.key. Otherwise, it is given in the input parameter file. The file name must end with . key.

database:
api_key_file: materials_project.key

Comment: it will be recommended to exclude files with .key as a suffix from version control system. (e.g. for
Git, add *.key in .gitignore file.)

7.2.2 Prepare an input parameter file

An input parameter file describes search conditions and data items to retrieve from databases.

An example is presented below. It is a text file in YAML format that contains information for accessing the database,
search conditions, and types of data to obtain. See file format section for the details of specification.

In YAML format, parameters are given in dictionary form as keyword: value, where value is a scalar such as a
number or a string, or a set of values enclosed in [] or listed in itemized form, or a nested dictionary. For the search
conditions and data fields, a list may be given by a space-separated items without brackets as a special notation.

database:
target: materials project

option:
output_dir: result
dry_run: false

properties:
band_gap: < 1.0
is_stable: true
is_metal: false
formula: "**03"
spacegroup_symbol: Pm-3m

fields: |

The input parameter file consists of database, option, properties, and fields sections. The database section
describes settings about connecting to databases. In the example, target is set to Materials Project, though this term
is not considered at present. api_key can be used to set the API key. The key may also be set in the pymatgen
configuration file or in the environment variable. The latter is assumed in the tutorial.

The option section describes optional settings for the command execution. output_dir specifies the directory to
place the obtained data. The default is the current directory. If dry_run is set to true, getcif does not connect to the
database; instead, it just prints the search conditions and exits. dry_run may be specified in the command-line option.

The properties section describes search conditions. They are given in the form of keyword: value and treated
as AND conditions. In the example, the search condition is specified to find materials with band gap less than or equal
to 1.0, stable insulator, having composition formula of ABO3 (where A and B are arbitrary species), that belong to the

20 Chapter 7. A tool to retrieve crystallographic data from databases (getcif)

Cif2x Documentation, Release 1.1.0

space group Pm-3m (perovskite). The band_gap takes a pair of values for the lower and upper limits, as well as the
description such as < 1.0. The available terms for specifying search conditions are listed in the Appendix.

The fields section describes the data items to obtain. It is given as a YAML list, or a space-sparated list. structure
specifies the crystal structure data that will be stored in CIF format. band_gap specifies the value of band gap, and
symmetry specifies the information on the symmetry. material_id that refers to the index of material data in the Ma-
terials Project, and formula_pretty that refers to the composition formula are automatically obtained. The available
items are listed in the Appendix, or can be found in the help message of getcif command.

7.2.3 Obtaining data

The program getcif is executed with the input parameter file (input.yaml) as follows.

[$ getcif input.yaml

)

Then it connects to the Materials Project database, and obtains the data that match the specified conditions. The sum-
mary including the material IDs, the composition formulas, and other data items is printed to the standard output as
follows.

material_id formula band_gap symmetry formula_pretty

mp-861502 AcFe03 0.9887999999999995 crystal_system=<CrystalSystem.cubic: 'Cubic'>.
—»symbol="Pm-3m' number=221 point_group="m-3m' symprec=0.1 version='2.0.2"' AcFe03
mp-977455 PaAg03 0.915 crystal_system=<CrystalSystem.cubic: 'Cubic'> symbol='Pm-3m'.
—number=221 point_group='m-3m' symprec=0.1 version='2.0.2' PaAg03

mp-11775 RbUO3 0.45420000000000016 crystal_system=<CrystalSystem.cubic: 'Cubic'>.
—symbol="Pm-3m' number=221 point_group='m-3m' symprec=0.1 version='2.0.2"' RbUO3
mp-3163 BaSn03 0.37239999999999984 crystal_system=<CrystalSystem.cubic: 'Cubic'>.
—symbol="Pm-3m' number=221 point_group="m-3m' symprec=0.1 version='2.0.2"' BaSn03
mp-4126 KUO3 0.44540000000000024 crystal_system=<CrystalSystem.cubic: 'Cubic'> symbol=
< "Pm-3m' number=221 point_group='m-3m' symprec=0.1 version='2.0.2"' KUO03

mp-865322 UT103 0.27360000000000007 crystal_system=<CrystalSystem.cubic: 'Cubic'>.
—»symbol="Pm-3m' number=221 point_group='m-3m' symprec=0.1 version='2.0.2"' UT103
mp-753781 EuHf03 0.4795999999999996 crystal_system=<CrystalSystem.cubic: 'Cubic'>.
—symbol="Pm-3m' number=221 point_group='m-3m' symprec=0.1 version='2.0.2"' EuHf03

The obtained data are placed in the directory specified by output_dir with the subdirectories of the material ID for
each material. In this example, seven subdirectories with names from mp-3163 to mp-977455 are created within resul t
directory, and each subdirectory contains the following files:

* band_gap
the value of band gap

e formula
the composition formula (that corresponds to the field formula_pretty)

* structure.cif
the crystal structure data in CIF format

* symmetry
the information about symmetry

If an option --dry-run is added as a command-line option to getcif, the program prints the search condition as
follows, and exits. It will be useful for checking the search parameters.

7.2. Tutorial 21

Cif2x Documentation, Release 1.1.0

$ getcif --dry-run input.yaml

{'band_gap': (None, 1.0), 'is_stable': True, 'is_metal': False, 'formula': '**03',
'spacegroup_symbol': 'Pm-3m', 'fields': ['structure', 'band_gap', 'symmetry', 'material_
—id', 'formula_pretty']}

7.3 Command reference

7.3.1 getcif

Retrieve crystallographic and other data from databases.

SYNOPSIS:

getcif [-v][-q] [--dry-run] input_yaml
getcif -h
getcif --version

DESCRIPTION:

This program reads an input parameter file specified by input_yaml, and connects to the database to
submit a query and obtain the crystallographic data of materials. It takes the following command line
options.

e input_yaml
specifies an input parameter file in YAML format.
* -v

increases verbosity of the runtime messages. When specified multiple times, the program becomes
more verbose.

*-q

decreases verbosity of the runtime messages. It cancels the effect of -v option, and when specified
multiple times, the program becomes more quiet.

e ——dry-run

displays search parameters and exits without connecting to the database. It allows to confirm the
search conditions. This option supersedes the dry_run parameter in the input file.

* -h
displays help and exits.
* —-version

displays version information.

22 Chapter 7. A tool to retrieve crystallographic data from databases (getcif)

Cif2x Documentation, Release 1.1.0

7.4 File format

7.4.1 Input parameter file

An input parameter file describes information to search for crystallographic and other data from Materials Project

database by getcif. It should be given in YAML format, and consist of the following sections.
1. database section: describes information on the database to connect.
2. option section: describes output directory and other parameters for command execution.
3. properties section: describes search conditions.
4

. fields section: describes types of data to be retrieved.

database

target
This parameter specifies the database to connected to. At present this parameter is ignored.
api_key_£file (default value: materials_project.key)

This parameter specifies a name of a file that contains the API key to access to the database. The suffix
of the file name must be .key. If the file does not exist or it does not contain a valid value, the API
key is obtained from the environment variable MP_API_KEY, or from the parameter PMG_MAPI_KEY of the
pymatgen configuration file in ~/.config/.pmgrc.

The API key file is a text file. A line starting with # is regarded as a comment. The heading and trailing
spaces are ignored. When the file contains more than one line, the API key is taken from the first valid line.

option

This section contains global settings needed for the first-principles calculation software. The available parameters are

described in the corresponding sections below.
output_dir (default value: "")

This parameter specifies the directory name to store the data. The retrieved data are placed in this directory
under the subdirectories by the material ID for each material. The default value is the current directory.

dry_run (default value: False)

When this parameter is set to True, getcif prints the search conditions and exists without connecting to the
database. It is useful to check the content of the query.

symprec (default value: 0.1)

This parameter specifies the tolerance in calculating the symmetry of a crystal structure when the structure
data are written to a CIF file. By default, 0.1 is specified. When symprec is set to 0.0, it is treated as if
symprec is unspecified, in which case a CIF file is generated without considering symmetry.

symprec is a parameter that specifies the tolerance used to determine the symmetry of a crystal structure.
When calculating the symmetry of a crystal structure, it is essential to consider the slight displacements
of atomic positions and the precision of numerical calculations. symprec controls the allowable range
of these displacements and serves as a threshold for deciding whether a symmetry operation should be
applied.

7.4. File format

23

Cif2x Documentation, Release 1.1.0

If symprec is set to a smaller value (e.g., 0.01), the symmetry determination becomes more stringent, and
even minor displacements in the crystal structure may prevent the application of symmetry operations. This
can result in the identification of a lower-symmetry space group. Conversely, if symprec is set to a larger
value (e.g., 1.0), the symmetry determination is more lenient, allowing small displacements to be ignored,
which may lead to the recognition of a higher-symmetry space group.

When the symmetry field is specified in the fields section, the symmetry information determined using the
default symprec=0.1 in the Materials Project is obtained and written to a text file (symmetry).

properties

This section defines the search conditions. The conditions such as the element types, the crystal symmetry, or the values

of physical properties are specified in the keyword:

value format. They are treated as AND condition. The available

terms, based on the Materials Project API, conform to the parameters of the materials.summary.search method in
the mp-api library. The list of terms are summarized in the Appendix, and can be seen by getcif --help.

The format of the parameter values is shown below. It follows the YAML specification with several extension for brief
description.

a number, a string

describe as-is.
a boolean value

describe as true or false.
a list of numbers or strings

describe in the indented style (block style) or in the comma-separated list enclosed by the bracket (flow
style) in YAML notation. It is also available that it is described as a space-separated list, for example:

[element: Sr Ti

)

arange of numerical value

described as a list of two numbers such as [min, max], or a pair of two numbers separated by a
space as min max. The following formats are also available.

<= max
less than or equal to max.

< max
less than max. (For a real number, it is equivalent to <= max. For an integer, it is treated as <=
max-1.)

>= min

more than or equal to min.

> min
more than min. (For a real number, it is equivalent to >= min. For an integer, it is treated as >=
min+1.)

min ~ max
between min and max.

N.B.:

— A space must be placed between the symbol and the number.

24

Chapter 7. A tool to retrieve crystallographic data from databases (getcif)

Cif2x Documentation, Release 1.1.0

— Due to the YAML syntax that the symbol ">" at the beginning of a term is treated as a special
character, > min and >= min should be enclosed by quotes as "> min" and ">= min", respec-
tively.

— In list notations, <= max and >= min are denoted as [None, max] and [min, None],
respectively.

* wild card symbols

The term formula accepts wild card symbols * for elements. In this case, the whole value is enclosed
by " ". For example,

[formula: "EE(Q3" }

for ABOs3-type materials.

fields
This section defines the types of data to be retrieved. A list of types is described in the YAML format, or as a space-
sparated strings. In the latter format, it can be given in multiple-line format using the” |” notation of YAML.

The available types of data conform to the field parameter of the Materials Project APIL. They are listed in the Ap-
pendix, and can be viewd by getcif --help.

The types material_id and formula_pretty are retrieved automatically.

The obtained data are placed in the directory specified by output_dir parameter under the subdirectories of the mate-
rial_id for each material. Each item is stored as a separate file of the item name. The crystal structure data (structure)
is stored in a file structure.cif in CIF format.

7.5 Parameter List

7.5.1 Search conditions (properties)

Table Search criteria summarizes condition terms available in the properties section.

getcif usesthemp-api library provided by Materials Project as a client for accessing the database via Materials Project
API. The condition terms correspond to the parameters for the materials.summary.search method of MPRester
class in mp-api. (The content of the table is taken and reformatted from the comments of the source file in mpi-api.)

The types of the parameter values denote as follows:
* str: astring
e List[str]: alist of strings
e str | List[str]: astring or a list of strings
e int: an integer

* bool: a boolean value (true or false)

Tuple[float,float]: a pair of two floating point numbers (as a list)
* Tuple[int,int]: a pair of two integers (as a list)

* CrystalSystem: a string representing the crystal system, one of the following: Triclinic, Monoclinic, Or-
thorhombic, Tetragonal, Trigonal, Hexagonal, Cubic

7.5. Parameter List 25

Cif2x Documentation, Release 1.1.0

» List[HasProps]: alist of strings representing the properties defined in emmet . core. summary. The available

terms include:

absorption, bandstructure, charge_density, chemenv, dielectric, dos, elasticity, electronic_structure,
eos, grain_boundaries, insertion_electrodes, magnetism, materials, oxi_states, phonon, piezoelectric,
provenance, substrates, surface_properties, thermo, xas

* Ordering: a string representing the magnetic ordering, one of the following: FM, AFM, FiM, NM

A list of the values is described in an indented style or in a comma-separated bracketted style in YAML notation. It is
also available that it is described as a space-separated list.

A Tuple is used to denote a range of values by min and max. It is described by a list of two numbers, as well as by a
space-separated list as min max. The following notation is also available:

< max

less than or equal to max

> min

more than or equal to min

min ~ max

between min and max

Table 7.1: Search criteria

Minimum and maximum value to consider for the elastic

Keyword Type Description
band_gap Tuple[float,float] Minimum and maximum band gap in eV to consider.
chemsys str | List[str] A chemical system, list of chemical systems (e.g., Li-Fe-O,
Si-*, [Si-O, Li-Fe-P]), or single formula (e.g., Fe203, Si*).
crystal_system CrystalSystem Crystal system of material.
density Tuple[float,float] Minimum and maximum density to consider.
deprecated bool Whether the material is tagged as deprecated.
e_electronic Tuple[float,float] Minimum and maximum electronic dielectric constant to con-
sider.
e_ionic Tuple[float,float] Minimum and maximum ionic dielectric constant to consider.
e_total Tuple[float,float] Minimum and maximum total dielectric constant to consider.
efermi Tuple[float,float] Minimum and maximum fermi energy in eV to consider.
[

elastic_anisotropy

elements
energy_above_hull

equilibrium_reaction_energy

exclude_elements
formation_energy

formula

g_reuss

g_voigt

Tuple[float,float]

List[str]
Tuple[int,int]

Tuple[float,float]

List[str]
Tuple[int,int]

str | List[str]

Tuple[float,float]

Tuple[float,float]

anisotropy.

A list of elements.

Minimum and maximum energy above the hull in eV/atom to
consider.

Minimum and maximum equilibrium reaction energy in
eV/atom to consider.

List of elements to exclude.

Minimum and maximum formation energy in eV/atom to con-
sider.

A formula including anonymized formula or wild cards (e.g.,
Fe203, ABO3, Si*). A list of chemical formulas can also be
passed (e.g., [Fe203, ABO3]).

Minimum and maximum value in GPa to consider for the
Reuss average of the shear modulus.

Minimum and maximum value in GPa to consider for the Voigt
average of the shear modulus.

continues on next page

26 Chapter 7. A tool to retrieve crystallographic data from databases (getcif)

Cif2x Documentation, Release 1.1.0

Table 7.1 — continued from previous page

Keyword Type Description

g _vrh Tuple[float,float] Minimum and maximum value in GPa to consider for the
Voigt-Reuss-Hill average of the shear modulus.

has_props List[HasProps] The calculated properties available for the material.

has_reconstructed bool Whether the entry has any reconstructed surfaces.

is_gap_direct bool Whether the material has a direct band gap.

is_metal bool Whether the material is considered a metal.

is_stable bool Whether the material lies on the convex energy hull.

k_reuss Tuple[float,float] Minimum and maximum value in GPa to consider for the
Reuss average of the bulk modulus.

k_voigt Tuple[float,float] Minimum and maximum value in GPa to consider for the Voigt
average of the bulk modulus.

k_vrh Tuple[float,float] Minimum and maximum value in GPa to consider for the
Voigt-Reuss-Hill average of the bulk modulus.

magnetic_ordering Ordering Magnetic ordering of the material.

material_ids List[str] List of Materials Project IDs to return data for.

n Tuple[float,float] Minimum and maximum refractive index to consider.

num_elements Tuple[int,int] Minimum and maximum number of elements to consider.

num_sites Tuple[int,int] Minimum and maximum number of sites to consider.

num_magnetic_sites Tuple[int,int] Minimum and maximum number of magnetic sites to con-
sider.

num_unique_magnetic_sites Tuple[int,int] Minimum and maximum number of unique magnetic sites to
consider.

piezoelectric_modulus Tuple[float,float] Minimum and maximum piezoelectric modulus to consider.

poisson_ratio Tuple[float,float] Minimum and maximum value to consider for Poisson’ s ratio.

possible_species List[str] List of element symbols appended with oxidation states. (e.g.
Cr2+,02-)

shape_factor Tuple[float,float] Minimum and maximum shape factor values to consider.

spacegroup_number int Space group number of material.

spacegroup_symbol str Space group symbol of the material in international short sym-
bol notation.

surface_energy_anisotropy Tuple[float,float] Minimum and maximum surface energy anisotropy values to
consider.

theoretical bool Whether the material is theoretical.

total_energy Tuple[int,int] Minimum and maximum corrected total energy in eV/atom to
consider.

total_magnetization Tuple[float,float] Minimum and maximum total magnetization values to con-
sider.

to- Tuple[float,float] Minimum and maximum total magnetization values normal-

tal_magnetization_normalized ized by formula units to consider.

to- Tuple[float,float] Minimum and maximum total magnetization values normal-

tal_magnetization_normalized, ized by volume to consider.

uncorrected_energy Tuple[int,int] Minimum and maximum uncorrected total energy in eV/atom
to consider.

volume Tuple[float,float] Minimum and maximum volume to consider.

weighted_surface_energy Tuple[float,float] Minimum and maximum weighted surface energy in J/m? to
consider.

weighted_work_function Tuple[float,float] Minimum and maximum weighted work function in eV to con-

sider.

7.5. Parameter List

27

Cif2x Documentation, Release 1.1.0

7.5.2 Data to retrive (fields)

The items available for the fields section for retrieving from the database are listed below.

band_gap
bandstructure
builder_meta
bulk_modulus
cbm
chemsys
composition
composition_reduced
database_IDs
decomposes_to
density
density_atomic
deprecated
deprecation_reasons
dos
dos_energy_down
dos_energy_up
e_electronic
e_ij_max
e_ionic
e_total
efermi
elements
energy_above_hull
energy_per_atom
equilibrium_reaction_energy_per_atom
es_source_calc_id
formation_energy_per_atom
formula_anonymous
formula_pretty
grain_boundaries
has_props
has_reconstructed
homogeneous_poisson
is_gap_direct
is_magnetic
is_metal
is_stable
last_updated
material_id
n
nelements
nsites
num_magnetic_sites
num_unique_magnetic_sites
ordering
origins
possible_species
property_name
(continues on next page)

28 Chapter 7. A tool to retrieve crystallographic data from databases (getcif)

Cif2x Documentation, Release 1.1.0

shape_factor

shear_modulus

structure

surface_anisotropy

symmetry

task_ids

theoretical

total_magnetization
total_magnetization_normalized_formula_units
total_magnetization_normalized_vol
types_of_magnetic_species
uncorrected_energy_per_atom
universal_anisotropy

vbm

volume

warnings

weighted_surface_energy
weighted_surface_energy_EV_PER_ANG2
weighted_work_function

xas

(continued from previous page)

7.5. Parameter List

29

	Introduction
	What is cif2x?
	License
	Contributors
	Release history
	Copyright
	Operating environment

	Installation and basic usage
	Tutorial
	Prepare an input parameter file
	Generating input files
	Specifying parameter sets

	Command reference
	cif2x

	File format
	Input parameter file
	structure
	optional
	tasks
	Specifying parameter set

	Parameters for Quantum ESPRESSO
	optional section
	content

	Parameters for VASP
	optional
	tasks
	content

	Parameters for OpenMX
	optional
	content

	Parameters for AkaiKKR
	optional
	content

	Extension guide
	Adding modes of Quantum ESPRESSO

	A tool to retrieve crystallographic data from databases (getcif)
	Introduction
	Tutorial
	Getting an API key
	Prepare an input parameter file
	Obtaining data

	Command reference
	getcif

	File format
	Input parameter file
	database
	option
	properties
	fields

	Parameter List
	Search conditions (properties)
	Data to retrive (fields)

