.. include:: ../bib/ref.txt .. _HOwToStandard: Input files for Standard mode ============================= An example of input file for the standard mode is shown below: :: W = 2 L = 4 model = "spin" lattice = "triangular lattice" //mu = 1.0 // t = -1.0 // t' = -0.5 // U = 8.0 //V = 4.0 //V'=2.0 J = -1.0 J'=-0.5 // nelec = 8 **Basic rules for input files** - In each line, there is a set of a keyword (before an " ``=``") and a parameter(after an " ``=``"); they are separated by " ``=``". - You can describe keywords in a random order. - Empty lines and lines beginning in a "``//``"(comment outs) are skipped. - Upper- and lowercase are not distinguished. Double quotes and blanks are ignored. - There are three kinds of parameters. 1. Parameters that must be specified (if not, ``vmcdry.out`` will stop with error messages), 2. Parameters that is not necessary be specified (if not, default values are used), 3. Parameters that must not be specified (if specified, ``vmcdry.out`` will stop with error messages). An example of 3 is transfer :math:`t` for the Heisenberg spin system. If you choose "model=spin", you should not specify ":math:`t`". We explain each keywords as follows: Parameters about the kind of a calculation ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ``model`` **Type :** String (Choose from ``"Fermion Hubbard"``, ``"Spin"``, ``"Kondo Lattice"`` , ``"Fermion HubbardGC"``, ``"SpinGC"``, ``"Kondo LatticeGC"`` ) [1]_ **Description :** The target model is specified with this parameter; ``"Fermion Hubbard"`` denotes the canonical ensemble of the Fermion in the Hubbard model .. math:: :label: hubbard \begin{aligned} H = -\mu \sum_{i \sigma} c^\dagger_{i \sigma} c_{i \sigma} - \sum_{i \neq j \sigma} t_{i j} c^\dagger_{i \sigma} c_{j \sigma} + \sum_{i} U n_{i \uparrow} n_{i \downarrow} + \sum_{i \neq j} V_{i j} n_{i} n_{j}, \end{aligned} ``"Spin"`` denotes canonical ensemble in the Spin model( :math:`\{\sigma_1, \sigma_2\}={x, y, z}`) .. math:: :label: spin \begin{aligned} H &= -h \sum_{i} S_{i z} - \Gamma \sum_{i} S_{i x} + D \sum_{i} S_{i z} S_{i z} \nonumber \\ &+ \sum_{i j, \sigma_1}J_{i j \sigma_1} S_{i \sigma_1} S_{j \sigma_1}+ \sum_{i j, \sigma_1 \neq \sigma_2} J_{i j \sigma_1 \sigma_2} S_{i \sigma_1} S_{j \sigma_2} , \end{aligned} ``"Kondo Lattice"`` denotes canonical ensemble in the Kondo lattice model .. math:: :label: kondo \begin{aligned} H = - \mu \sum_{i \sigma} c^\dagger_{i \sigma} c_{i \sigma} - t \sum_{\langle i j \rangle \sigma} c^\dagger_{i \sigma} c_{j \sigma} + \frac{J}{2} \sum_{i} \left\{ S_{i}^{+} c_{i \downarrow}^\dagger c_{i \uparrow} + S_{i}^{-} c_{i \uparrow}^\dagger c_{i \downarrow} + S_{i z} (n_{i \uparrow} - n_{i \downarrow}) \right\}. \end{aligned} ``"Fermion HubbardGC"``, ``"SpinGC"``, and ``"Kondo LatticeGC"`` indicate the :math:`S_z`-unconserved Fermion in the Hubbard model [Eqn. :eq:`hubbard` ], the :math:`S_z`-unconserved Spin model [Eqn. :eq:`spin` ], and the :math:`S_z`-unconserved Kondo lattice model [Eqn. :eq:`kondo` ], respectively. Note: Although these flags has a word "GC"(=grandcanonical), the number of electrons are conserved in these system. - ``lattice`` **Type :** String (Choose from ``"Chain Lattice"``, ``"Square Lattice"``, ``"Triangular Lattice"``, ``"Honeycomb Lattice"``, ``"Kagome"``, ``"Ladder"``) **Description :** The lattice shape is specified with this parameter; above words denote the one dimensional chain lattice (Fig. :num:`latticepng` (a)), the two dimensional square lattice (Fig. :num:`latticepng` (b)), the two dimensional triangular lattice (Fig. :num:`latticepng` (c)), the two dimensional anisotropic honeycomb lattice (Fig. :num:`honeycombpng` ), the Kagome Lattice(Fig. :num:`kagomepng` ), and the ladder lattice (Fig. :num:`ladderpng` ), respectively. .. _latticepng: .. figure:: ../figs/chap04_1_lattice.png :width: 15.00000cm Schematic illustration of (a) one dimensional chain lattice, (b) two dimensional square lattice, and (c) two dimensional triangular lattice. They have :math:`t`, :math:`V`, and :math:`J` as a nearest neighbor hopping, an offsite Coulomb integral, and a spin-coupling constant, respectively (magenta solid lines); They also have :math:`t'`, :math:`V'`, and :math:`J'` as a next nearest neighbor hopping, offsite Coulomb integral, and spin-coupling constant, respectively (green dashed line). .. _honeycombpng: .. figure:: ../figs/chap04_1_honeycomb.png :width: 15.00000cm Schematic illustration of the anisotropic honeycomb lattice. The nearest neighbor hopping integral, spin coupling, offsite Coulomb integral depend on the bond direction. Those between second nearest neighbor sites are not supported. .. _kagomepng: .. figure:: ../figs/kagome.png :width: 10.00000cm Schematic illustration of the Kagome lattice. .. _ladderpng: .. figure:: ../figs/ladder.png :width: 10.00000cm Schematic illustration of the ladder lattice. Parameters for the lattice ~~~~~~~~~~~~~~~~~~~~~~~~~~ Chain lattice ^^^^^^^^^^^^^ Fig. :num:`latticepng` (a) - ``L`` **Type :** Integer **Description :** The length of the chain is specified with this parameter. Ladder lattice ^^^^^^^^^^^^^^ Fig. :num:`ladderpng` - ``L`` **Type :** Integer **Description :** The length of the ladder is specified with this parameter. - ``W`` **Type :** Integer **Description :** The number of the ladder is specified with this parameter. .. _unitlatticepng: .. figure:: ../figs/chap04_1_unitlattice.png :width: 15.00000cm The shape of the numerical cell when :math:`{\vec a}_0 = (6, 2), {\vec a}_1 = (2, 4)` in the triangular lattice. The region surrounded by :math:`{\vec a}_0` (Magenta dashed arrow) and :math:`{\vec a}_1` (Green dashed arrow) becomes the cell to be calculated (20 sites). Square lattice , Triangular lattice, Honeycomb lattice, Kagome lattice ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Square lattice [Fig. :num:`latticepng` (b)], Triangular lattice[Fig. :num:`latticepng` (c)], Honeycomb lattice(Fig. :num:`honeycombpng` ), Kagome lattice(Fig. :num:`kagomepng` ) In these lattices, we can specify the shape of the numerical cell by using the following two methods. - ``W``, ``L`` **Type :** Integer **Description :** The alignment of original unit cells (dashed black lines in Figs. :num:`latticepng` - :num:`kagomepng` ) is specified with these parameter. - ``a0W``, ``a0L``, ``a1W``, ``a1L`` **Type :** Integer **Description :** We can specify two vectors (:math:`{\vec a}_0, {\vec a}_1`) that surrounds the numerical cell (Fig. :num:`unitlatticepng` ). These vectors should be specified in the Fractional coordinate. If we use both of these method, ``vmcdry.out`` stops. We can check the shape of the numerical cell by using a file ``lattice.gp`` (only for square, trianguler, honeycomb, and kagome lattice) which is written in the Standard mode. This file can be read by ``gnuplot`` as follows: .. code-block:: bash $ gnuplot lattice.gp Sublattice ~~~~~~~~~~ By using the following parameters, we can force the pair-orbital symmetrical to the translation of the sublattice. - ``a0Wsub``, ``a0Lsub``, ``a1Wsub``, ``a1Lsub``, ``Wsub``, ``Lsub`` **Type :** Positive integer. In the default setting, ``a0Wsub=a0W``, ``a0Lsub=a0L``, ``a1Wsub=a1W``, ``a1Lsub=a1L``, ``Wsub=W``, and ``Lsub=L``. Namely, there is no sublattice. **Description :** We can specify these parameter as we specify ``a0W``, ``a0L``, ``a1W``, ``a1L``, ``W``, ``L``. If the sublattice is incommensurate with the original lattice, ``vmcdry.out`` stops. Parameters for the Hamiltonian ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ A default value is set as :math:`0` unless a specific value is not defined in a description. Table [table\_interactions] shows the parameters for each models. In the case of a complex type, a file format is " *a real part, an imaginary part* " while in the case of a real type, only " *a real part* ". Local terms ^^^^^^^^^^^ - ``mu`` **Type :** Real **Description :** (Hubbard and Kondo lattice model) The chemical potential :math:`\mu` (including the site potential) is specified with this parameter. - ``U`` **Type :** Real **Description :** (Hubbard and Kondo lattice model) The onsite Coulomb integral :math:`U` is specified with this parameter. - ``Jx``, ``Jy``, ``Jz``, ``Jxy``, ``Jyx``, ``Jxz``, ``Jzx``, ``Jyz``, ``Jzy`` **Type :** Real **Description :** (Kondo lattice model) The spin-coupling constant between the valence and the local electrons is specified with this parameter. If the exchange coupling ``J`` is specified in the input file, instead of ``Jx, Jy, Jz``, the diagonal exchange couplings, ``Jx, Jy, Jz``, are set as ``Jx = Jy = Jz = J``. When both the set of exchange couplings (``Jx``, ``Jy``, ``Jz``) and the exchange coupling ``J`` are specified in the input file, ``vmcdry.out`` will stop. - ``h``, ``Gamma``, ``D`` **Type :** Real **Description :** (Spin model) The longitudinal magnetic field, transverse magnetic field, and the single-site anisotropy parameter are specified with these parameters. The single-site anisotropy parameter is not available for ``model=SpinGCBoost``. The non-local terms described below should be specified in different ways depending on the lattice structure: For ``lattice=Ladder``, the non-local terms are specified in the different way from ``lattice=Chain Lattice``, ``Square Lattice``, ``Triangular Lattice``, ``Honeycomb Lattice``, ``Kagome``. Below, the available parameters for each lattice are shown in Table [table\_interactions]. ================================ ======== ========= ============= ========= ====== ====== Interactions 1D chain 2D square 2D triangular Honeycomb Kagome Ladder ================================ ======== ========= ============= ========= ====== ====== ``J``, ``t``, ``V`` (simplified) OK OK OK OK OK NG ``J'``, ``t'``, ``V'`` OK OK OK OK OK NG ``J0``, ``t0``, ``V0`` OK OK OK OK OK OK ``J1``, ``t1``, ``V1`` NG OK OK OK OK OK ``J2``, ``t2``, ``V2`` NG NG OK OK OK OK ``J1'``, ``t1'``, ``V1'`` NG NG NG NG NG OK ``J2'``, ``t2'``, ``V2'`` NG NG NG NG NG OK ================================ ======== ========= ============= ========= ====== ====== Table: Interactions for each models defined in an input file. We can define spin couplings as matrix format. Non-local terms for Ladder lattice ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Fig. :num:`ladderpng` - ``t0``, ``t1``, ``t1'``, ``t2``, ``t2'`` **Type :** Complex **Description :** (Hubbard and Kondo lattice model) Hopping integrals in the ladder lattice (See Fig. :num:`ladderpng` ) is specified with this parameter. - ``V0``, ``V1``, ``V1'``, ``V2``, ``V2'`` **Type :** Real **Description :** (Hubbard and Kondo lattice model) Offsite Coulomb integrals on the ladder lattice (Fig. :num:`honeycombpng` are specified with these parameters. - ``J0x``, ``J0y``, ``J0z``, ``J0xy``, ``J0yx``, ``J0xz``, ``J0zx``, ``J0yz``, ``J0zy`` - ``J1x``, ``J1y``, ``J1z``, ``J1xy``, ``J1yx``, ``J1xz``, ``J1zx``, ``J1yz``, ``J1zy`` - ``J1'x``, ``J1'y``, ``J1'z``, ``J1'xy``, ``J1'yx``, ``J1'xz``, ``J1'zx``, ``J1'yz``, ``J1'zy`` - ``J2x``, ``J2y``, ``J2z``, ``J2xy``, ``J2yx``, ``J2xz``, ``J2zx``, ``J2yz``, ``J2zy`` - ``J2'x``, ``J2'y``, ``J2'z``, ``J2'xy``, ``J2'yx``, ``J2'xz``, ``J2'zx``, ``J2'yz``, ``J2'zy`` **Type :** Real **Description :** (Spin model) Spin-coupling constants in the ladder lattice (See Fig. :num:`ladderpng` ) are specified with these parameter. If the simplified parameter ``J0`` is specified in the input file instead of the diagonal couplings, ``J0x, J0y, J0z``, these diagonal couplings are set as ``J0x = J0y = J0z = J0``. If both ``J0`` and the set of the couplings (``J0x, J0y, J0z``) are specified, ``vmcdry.out`` will stop. The above rules are also valid for the simplified parameters, ``J1``, ``J1'``, ``J2``, and ``J2'``. Non-local terms for other than Ladder ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Figs. :num:`latticepng` , :num:`honeycombpng` , :num:`kagomepng` - ``t0``, ``t1``, ``t2`` **Type :** Complex **Description :** (Hubbard and Kondo lattice model) Nearest neighbor hoppings for each direction (See Figs. :num:`latticepng` -:num:`kagomepng` . These bonds are depicted with different line styles.) are specified with these parameter. If there is no bond dependence of the nearest-neighbor hoppings, the simplified parameter ``t`` is available to specify ``t0``, ``t1``, and ``t2`` as ``t0 = t1 = t2 = t``. If both ``t`` and the set of the hoppings (``t0``, ``t1``, ``t2``) are specified, ``vmcdry.out`` will stop. - ``V0``, ``V1``, ``V2`` **Type :** Real **Description :** (Hubbard and Kondo lattice model) Nearest-neighbor offsite Coulomb integrals :math:`V` for each direction (See Figs. :num:`latticepng` -:num:`kagomepng` . These bonds are depicted with different line styles.) are specified with these parameters. If there is no bond dependence of the nearest-neighbor offsite Coulomb integrals, the simplified parameter ``V`` is available to specify ``V0``, ``V1``, and ``V2`` as ``V0 = V1 = V2 = V``. If both ``V`` and the set of the Coulomb integrals (``V0``, ``V1``, ``V2``) are specified, ``vmcdry.out`` will stop. - ``J0x``, ``J0y``, ``J0z``, ``J0xy``, ``J0yx``, ``J0xz``, ``J0zx``, ``J0yz``, ``J0zy`` - ``J1x``, ``J1y``, ``J1z``, ``J1xy``, ``J1yx``, ``J1xz``, ``J1zx``, ``J1yz``, ``J1zy`` - ``J2x``, ``J2y``, ``J2z``, ``J2xy``, ``J2yx``, ``J2xz``, ``J2zx``, ``J2yz``, ``J2zy`` **Type :** Real **Description :** (Spin model) Nearest-neighbor exchange couplings for each direction are specified with thees parameters. If the simplified parameter ``J0`` is specified, instead of ``J0x, J0y, J0z``, the exchange couplings, ``J0x, J0y, J0z``, are set as ``J0x = J0y = J0z = J0``. If both ``J0`` and the set of the exchange couplings (``J0x, J0y, J0z``) are specified, ``vmcdry.out`` will stop. The above rules are valid for ``J1`` and ``J2``. If there is no bond dependence of the nearest-neighbor exchange couplings, the simplified parameters, ``Jx``, ``Jy``, ``Jz``, ``Jxy``, ``Jyx``, ``Jxz``, ``Jzx``, ``Jyz``, ``Jzy``, are available to specify the exchange couplings for every bond as ``J0x = J1x = J2x = Jx``. If any simplified parameter (``Jx`` :math:`\sim` ``Jzy``) is specified in addition to its counter parts (``J0x`` :math:`\sim` ``J2zy``), ``vmcdry.out`` will stop. Below, examples of parameter sets for nearest-neighbor exchange couplings are shown. - If there are no bond-dependent, no anisotropic and offdiagonal exchange couplings (such as :math:`J_{x y}`), please specify ``J`` in the input file. - If there are no bond-dependent and offdiagonal exchange couplings but are anisotropic couplings, please specify the non-zero couplings in the diagonal parameters, ``Jx, Jy, Jz``. - If there are no bond-dependent exchange couplings but are anisotropic and offdiagonal exchange couplings, please specify the non-zero couplings in the nine parameters, ``Jx, Jy, Jz, Jxy, Jyz, Jxz, Jyx, Jzy, Jzx``. - If there are no anisotropic and offdiagonal exchange couplings, but are bond-dependent couplings, please specify the non-zero couplings in the three parameters, ``J0, J1, J2``. - If there are no anisotropic exchange couplings, but are bond-dependent and offdiagonal couplings, please specify the non-zero couplings in the nine parameters, ``J0x, J0y, J0z, J1x, J1y, J1z, J2x, J2y, J2z``. - If there are bond-dependent, anisotropic and offdiagonal exchange couplings, please specify the non-zero couplings in the twenty-seven parameters from ``J0x`` to ``J2zy``. - ``t'`` **Type :** Complex **Description :** (Hubbard and Kondo lattice model) Nearest neighbor hoppings for each direction (See Figs. :num:`latticepng` -:num:`kagomepng` ) are specified with these parameter. - ``V'`` **Type :** Real **Description :** (Hubbard and Kondo lattice model) Nearest neighbor-offsite Coulomb integrals :math:`V` for each direction (See Figs. :num:`latticepng` -:num:`kagomepng` ) are specified with these parameters. - ``J'x``, ``J'y``, ``J'z``, ``J'xy``, ``J'yx``, ``J'xz``, ``J'zx``, ``J'yz``, ``J'zy`` **Type :** Real **Description :** (Spin model) Second nearest-neighbor exchange couplings are specified. However, for ``lattice = Honeycomb Lattice`` and ``lattice = Kagome`` with ``model=SpinGCBoost``, the second nearest-neighbor exchange couplings are not available in the :math:`Standard` mode. If the simplified parameter ``J'`` is specified, instead of ``J'x, J'y, J'z``, the exchange couplings are set as ``J'x = J'y = J'z = J'``. If both ``J'`` and the set of the couplings (``J'x, J'y, J'z``), ``vmcdry.out`` will stop. - ``phase0``, ``phase1`` **Type :** Double (``0.0`` as defaults) **Description :** We can specify the phase for the hopping through the cell boundary with these parameter (unit: degree). These factors for the :math:`\vec{a}_0` direction and the :math:`\vec{a}_1` direction can be specified independently. For the one-dimensional system, only ``phase0`` can be used. For example, a fopping from :math:`i`-th site to :math:`j`-th site through the cell boundary with the positive direction becomes as .. math:: \begin{aligned} \exp(i \times {\rm phase0}\times\pi/180) \times t {\hat c}_{j \sigma}^\dagger {\hat c}_{i \sigma} + \exp(-i \times {\rm phase0}\times\pi/180) \times t^* {\hat c}_{i \sigma}^\dagger {\hat c}_{j \sigma} \end{aligned} Parameters for the numerical condition ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ``nelec`` **Type :** int-type (must be specified) **Description :** The number of itinerant electrons. It is the sum of the :math:`\uparrow` and :math:`\downarrow` electrons. - ``NVMCCalMode`` **Type :** int-type (default value: 0) **Description :** [0] Optimization of variational parameters, [1] Calculation of one body and two body Green’s functions. - ``NDataIdxStart`` **Type :** int-type (default value: 1) **Description :** An integer for numbering of output files. For ``NVMCCalMode`` = 0 , ``NDataIdxStart`` is added at the end of the output files. For ``NVMCCalMode`` = 1, the files are outputted with the number from ``NDataIdxStart`` to ``NDataIdxStart`` + ``NDataQtySmp``-1. - ``NDataQtySmp`` **Type :** int-type (default value: 1) **Description :** The set number for outputted files (only used for ``NVMCCalMode`` = 1). - ``NSPGaussLeg`` **Type :** int-type (Positive integer, default value is 8 for ``2Sz=0``) **Description :** The mesh number for the Gauss-legendre quadrature about :math:`\beta` integration (:math:`S_y` rotation) for the spin quantum-number projection in actual numerical calculation. - ``NSPStot`` **Type :** int-type ( greater equal 0, default value is 0 for ``2Sz=0``) **Description :** The total spin quantum-number. - ``2Sz`` **Type :** int-type ( greater equal 0, default value is 0) **Description :** The spin quantum-number :math:`S_z`. - ``NMPTrans`` **Type :** int-type (Positive integer. Default ``1``) **Description :** The number of the momentum and lattice translational quantum-number projection. In the case of not to apply the projection, this value must be set as 1. - ``NSROptItrStep`` **Type :** int-type (Positive integer, default value: 1000) **Description :** The whole step number to optimize variational parameters by SR method. Only used for ``NVMCCalMode`` =0. - ``NSROptItrSmp`` **Type :** int-type (Positive integer, default value: ``NSROptItrStep``/10) **Description :** In the ``NSROptItrStep`` step, the average values of the each variational parameters at the ``NSROptItrStep`` step are adopted as the optimized values. Only used for ``NVMCCalMode`` =0. - ``DSROptRedCut`` **Type :** double-type (default value: 0.001) **Description :** The stabilized factor for the SR method by truncation of redundant directions corresponding to :math:`\varepsilon_{\rm wf}` in the ref. [Tahara2008_ ]. - ``DSROptStaDel`` **Type :** double-type (default value: 0.02) **Description :** The stabilized factor for the SR method by modifying diagonal elements in the overwrap matrix corresponding to :math:`\varepsilon` in the ref. [Tahara2008_ ]. - ``DSROptStepDt`` **Type :** double-type (default value: 0.02) **Description :** The time step using in the SR method. - ``NVMCWarmUp`` **Type :** int-type (Positive integer, default value: 10) **Description :** Idling number for the Malkov chain Montecarlo Methods. - ``NVMCInterval`` **Type :** int-type (Positive integer, default value: 1) **Description :** The interval step between samples. The local update will be performed ``Nsite`` × ``NVMCInterval`` times. - ``NVMCSample`` **Type :** int-type (Positive integer, default value: 1000) **Description :** The sample numbers to calculate the expected values. - ``NExUpdatePath`` **Type :** int-type (Positive integer) **Description :** The option for local update about exchange terms. 0: not update, 1: update. The default value is set as 1 when the local spin exists, otherwise 0. - ``RndSeed`` **Type :** int-type (default value: 123456789) **Description :** The initial seed of generating random number. For MPI parallelization, the initial seeds are given by ``RndSeed`` +my rank+1 at each ranks. - ``NSplitSize`` **Type :** int-type (Positive integer, default value: 1) **Description :** The number of processes of MPI parallelization. - ``NStore`` **Type :** int-type (0 or 1, default value: 1) **Description :** The option of applying matrix-matrix product to calculate expected values :math:`\langle O_k O_l \rangle` (0: off, 1: on). This speeds up calculation but increases the amount of memory usage from :math:`O(N_\text{p}^2)` to :math:`O(N_\text{p}^2) + O(N_\text{p}N_\text{MCS})`, where :math:`N_\text{p}` is the number of the variational parameters and :math:`N_\text{MCS}` is the number of Monte Carlo sampling. - ``NSRCG`` **Type :** int-type (0 or 1, default value: 0) **Description :** The option of solving :math:`Sx=g` in the SR method without constructing :math:`S` matrix [NeuscammanUmrigarChan_ ]. (0: off, 1: on). This reduces the amount of memory usage from :math:`O(N_\text{p}^2) + O(N_\text{p}N_\text{MCS})` to :math:`O(N_\text{p}) + O(N_\text{p}N_\text{MCS})` when :math:`N_\text{p} > N_\text{MCS}`. - ``ComplexType`` **Type :** int-type (``0`` or ``1``. Default value is ``0`` for the :math:`S_z`-conserved system and ``1`` for the :math:`S_z`-unconserved system.) **Description :** If it is ``0``, only the real part of the variational parameters are optimized. And the real and the imaginary part of them are optimized if this parameter is ``1``. - ``OutputMode`` **Type :** Choose from ``"none"``, ``"correlation"``, and ``"full"`` (``correlation`` as a default) **Description :** Indices of correlation functions are specified with this keyword. ``"none"`` indicates correlation functions will not calculated. When ``outputmode="correlation"``, the correlation function supported by the utility ``fourier`` is computed. For more details, see the document in ``doc/fourier/``. If ``"full"`` is selected, :math:`\langle c_{i \sigma}^{\dagger}c_{j \sigma'} \rangle` is computed at all :math:`i, j, \sigma, \sigma'`, and :math:`\langle c_{i_1 \sigma}^{\dagger}c_{i_2 \sigma} c_{i_3 \sigma'}^{\dagger}c_{i_4 \sigma'} \rangle` is computed at all :math:`i_1, i_2, i_3, i_4, \sigma, \sigma'`. In spin system, indices are specified as those on the Bogoliubov representation (See [sec\_bogoliubov\_rep]). - ``CDataFileHead`` **Type :** string-type (default : ``"zvo"``) **Description :** A header for output files. For example, the output filename for one body Green’s function becomes " **xxx\_cisajs\_yyy.dat**" (xxx are characters set by ``CDataFileHead`` and yyy are numbers given by numbers from ``NDataIdxStart`` to ``NDataIdxStart`` + ``NDataQtySmp``). - ``CParaFileHead`` **Type :** string-type (default : ``"zqp"``) **Description :** A header for output files of the optimized variational parameters. For example, the optimized variational parameters are outputted as **zzz\_opt\_yyy.dat** (zzz are characters set by ``CParaFileHead`` and yyy are numbers given by numbers from ``NDataIdxStart`` to ``NDataIdxStart`` + ``NDataQtySmp`` -1). .. [1] GC=Grand Canonical