4.3.26. cisajscktalt.dat

This file is the outputted files for the two-body Green’s function \(\langle c_{i\sigma_1}^{\dagger}c_{j\sigma_2}c_{k\sigma_3}^{\dagger}c_{l\sigma_4}\rangle\). The target components are set in the input file with the keyword “TwoBodyG”. An example of the file format is as follows.

0    0    0    0    0    0    0    0 0.4452776740 0.0000000000
0    0    0    0    0    1    0    1 0.1843355815 0.0000000000
0    0    0    0    1    0    1    0 0.1812412105 0.0000000000
0    0    0    0    1    1    1    1 0.2640364635 0.0000000000
0    0    0    0    2    0    2    0 0.0279690007 0.0000000000
0    0    0    0    2    1    2    1 0.2009271524 0.0000000000
0    0    0    0    3    0    3    0 0.2512810778 0.0000000000
0    0    0    0    3    1    3    1 0.1939965962 0.0000000000
...

File name

  • Lanczos method: ##_cisajscktalt.dat

  • TPQ method: ##_cisajscktalt_set??step%%.dat

  • Full diagonalization method, LOBCG method: ##_cisajscktalt_eigen&&.dat

  • Real time evolution method: ## cisajscktalt step%%.dat

##, ??, %%, and && indicate [string02] in a ModPara file, the number of runs in calculation in the TPQ method, the number of steps in the TPQ method, and the index of the eigenvalues, respectively.

File format

  • [int01]  [int02]  [int03]  [int04]  [int05]  [int06]  [int07]  [int08]  [double01]  [double02].

Parameters

  • [int01], [int03],[int05], [int07]

    Type : Int

    Description : The integer of the site number. [int01], [int03], [int05], and [int07] show the \(i\), \(j\), \(k\), and \(l\) site numbers, respectively.

  • [int02], [int04],[int06], [int08]

    Type : Int

    Description : The integer of the spin index:
    0: Up-spin
    1: Down-spin.
    [int02], [int04], [int06], and [int08] show \(\sigma_1\), \(\sigma_2\), \(\sigma_3\), and \(\sigma_4\), respectively.
  • [double01], [double02]

    Type : Double

    Description : The value of \(\langle c_{i\sigma_1}^{\dagger}c_{j\sigma_2}c_{k\sigma_3}^{\dagger}c_{l\sigma_4}\rangle\).
    [double01] and [double02] show the real and imaginary part of \(\langle c_{i\sigma_1}^{\dagger}c_{j\sigma_2}c_{k\sigma_3}^{\dagger}c_{l\sigma_4}\rangle\), respectively.