Interaction definition files

The interaction definition files describe the coefficients \(T_{\alpha\beta}(r_{ij})\), \(J_{\alpha\beta}(r_{ij})\), \(V_{\alpha\beta}(r_{ij})\), or \(U_{\alpha}\) of the one-body and two-body Hamiltonian denoted by the following expressions. They are given in Wannier90(-like) format. It is noted that the generalized two-body interaction term (InterAll) is not supported in the wave-number space UHF.

Transfer:

\(\sum_{ij\alpha\beta\sigma} T_{\alpha\beta}(r_{ij})\,c_{i\alpha\sigma}^{\dagger}c_{j\beta\sigma}^{\phantom{\dagger}}\)

CoulombIntra:

\(\sum_{i\alpha} U_\alpha\,n_ {i\alpha\uparrow} n_{i\alpha\downarrow}, \quad (n_{i\alpha\sigma}=c_{i\alpha\sigma}^{\dagger}c_{i\alpha\sigma}^{\phantom{\dagger}})\)

CoulombInter:

\(\sum_{ij\alpha\beta} V_{\alpha\beta}(r_{ij})\,n_{i\alpha} n_{j\beta}, \quad (n_{i\alpha}=n_{i\alpha\uparrow}+n_{i\alpha\downarrow})\)

Hund:

\(\sum_{ij\alpha\beta} J_{\alpha\beta}^{\rm Hund}(r_{ij}) \left( n_{i\alpha\uparrow} n_{j\beta\uparrow} + n_{i\alpha\downarrow} n_{j\beta\downarrow} \right)\)

Ising:

\(\sum_{ij\alpha\beta} J_{\alpha\beta}^{\rm Ising}(r_{ij}) S^{z}_{i\alpha} S^{z}_{j\beta}, \quad (S^{z}_{i\alpha}=\frac{1}{2}(n_{i\alpha\uparrow} - n_{i\alpha\downarrow}))\)

PairHop:

\(\sum_{ij\alpha\beta} J_{\alpha\beta}^{\rm PH}(r_{ij})\,c_{i\alpha\uparrow}^{\dagger} c_{j\beta\uparrow}^{\phantom{\dagger}} c_{i\alpha\downarrow}^{\dagger} c_{j\beta\downarrow}^{\phantom{\dagger}} + \textit{h.c.}\)

Exchange:

\(\sum_{ij\alpha\beta} J_{\alpha\beta}^{\rm Ex}(r_{ij})\,c_{i\alpha\uparrow}^\dagger c_{j\beta\uparrow}^{\phantom{\dagger}} c_{j\beta\downarrow}^\dagger c_{i\alpha\downarrow}^{\phantom{\dagger}}\)

PairLift:

\(\sum_{ij\alpha\beta} J_{\alpha\beta}^{\rm PairLift}(r_{ij})\,c_{i\alpha\uparrow}^{\dagger} c_{i\alpha\downarrow}^{\phantom{\dagger}} c_{j\beta\uparrow}^{\dagger} c_{j\beta\downarrow}^{\phantom{\dagger}}\)

An example of the file is shown below.

wannier90 format for vmcdry.out or HPhi -sdry
    10
   245
 1    1    1    1    1    1    1    1    1    1    1    1    1    1    1
 1    1    1    1    1    1    1    1    1    1    1    1    1    1    1
...
 1    1    1    1    1
-3   -3   -2    1    1  -0.0000269645  -0.0000000000
-3   -3   -2    1    2  -0.0000071722  -0.0000018600
-3   -3   -2    1    3  -0.0000083990   0.0000010972
-3   -3   -2    1    4  -0.0000000990   0.0000000427
-3   -3   -2    1    5  -0.0000018628  -0.0000003609
-3   -3   -2    1    6  -0.0000129504  -0.0000014047
-3   -3   -2    1    7  -0.0000189169   0.0000024697
-3   -3   -2    1    8   0.0000238115   0.0000014316
-3   -3   -2    1    9   0.0000036708  -0.0000003266
-3   -3   -2    1   10   0.0000361752   0.0000003247
-3   -3   -2    2    1  -0.0000071722   0.0000018600
-3   -3   -2    2    2   0.0000105028  -0.0000000000
...

File format

  • Line 1: Header

  • Line 2: [Norbit]

  • Line 3: [Npts]

  • Lines 4 - \(\lceil N_\text{pts} / 15 \rceil + 3\):

    [n1] [n2] ...

  • Line \(\lceil N_\text{pts} / 15 \rceil + 4\) onwards:

    [rx] [ry] [rz] [alpha] [beta]  [J.real] [J.imag]

Parameters

  • [Norbit]

    Type : Integer

    Description : This parameter specifies the number of orbitals \(N_\text{orbit}\) in a unit cell.

  • [Npts]

    Type : Integer

    Description : This parameter specifies the number of cells in a rectangular cuboid that accommodates entire translation vectors.

  • [n1], [n2], …

    Type : Integer

    Description : These parameters specify the multiplicity of cells (ordinary 1), with 15 points in a line.

  • [rx], [ry], [rz]

    Type : Integer

    Description : These parameters specify the translation vector.

  • [alpha], [beta]

    Type : Integer

    Description : These parameters specify the indices of the orbitals. [alpha] corresponds to the orbital \(\alpha\) in the original cell, and [beta] corresponds to the orbital \(\beta\) in the cell displaced by \(\vec{r}\).

  • [J.real], [J.imag]

    Type : Float

    Description : These parameters specify the real and imaginary parts of the coefficient \(J_{\alpha\beta}(\vec{r})\).

Usage rules

  • Header cannot be omitted.

  • The unspecified elements of the coefficient matrix are assumed to be zero.

  • The translation vectors need to be enclosed within the CellShape. If the range of r_x, r_y, or r_z exceeds the extent of x, y, or z dimension of CellShape, the program terminates with an error.

  • When mode.enable_spin_orbital is set to true, the orbital indices of Transfer term are interpreted as the extended orbital indices including spin degree of freedom that ranges from 1 to \(2 N_\text{orbital}\), in which the indices \(1 \dots N_\text{orbital}\) correspond to spin-up, and the indices \(N_\text{orbital}+1 \dots 2N_\text{orbital}\) correspond to spin-down. Otherwise, only the entries with the orbital indices from 1 to \(N_\text{orbital}\) are taken into account.