analytical
ソルバー¶
analytical
は探索アルゴリズムの性能評価を目的とした、
定義済みのベンチマーク関数 \(f(x)\) を計算する Solver
です。
入力パラメータ¶
solver
セクション以下の funtion_name
パラメータで用いる関数を指定します。
function_name
形式: string型
説明: 関数名。以下の関数が選べます。
quadratics
二次形式
\[f(\vec{x}) = \sum_{i=1}^N x_i^2\]最適値は \(f(\vec{x}^*) = 0 \quad (\forall_i x_i^* = 0)\)
rosenbrock
\[f(\vec{x}) = \sum_{i=1}^{N-1} \left[ 100(x_{i+1} - x_i^2)^2 + (x_i - 1)^2 \right]\]最適値は \(f(\vec{x}^*) = 0 \quad (\forall_i x_i^* = 1)\)
ackley
\[f(\vec{x}) = 20 + e - 20\exp\left[-0.2\sqrt{\frac{1}{N}\sum_{i=1}^N x_i^2}\right] - \exp\left[\frac{1}{N}\cos\left(2\pi x_i\right)\right]\]最適値は \(f(\vec{x}^*) = 0 \quad (\forall_i x_i^* = 0)\)
himmerblau
\[f(x,y) = (x^2+y-11)^2 + (x+y^2-7)^2\]最適値は \(f(3,2) = f(-2.805118, 3.131312) = f(-3.779310, -3.283186) = f(3.584428, -1.848126) = 0\)