Source code for physbo.search.discrete_multi._policy

# SPDX-License-Identifier: MPL-2.0
# Copyright (C) 2020- The University of Tokyo
#
# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at https://mozilla.org/MPL/2.0/.

import numpy as np
import copy
import pickle as pickle
import time

from ._history import History
from .. import discrete
from .. import utility
from .. import score_multi as search_score
from ...gp import Predictor as gp_predictor
from ...blm import Predictor as blm_predictor
from ...misc import SetConfig
from ..._variable import Variable


[docs] class Policy(discrete.Policy): """Multi objective Bayesian optimization with discrete search space""" def __init__( self, test_X, num_objectives, comm=None, config=None, initial_data=None ): self.num_objectives = num_objectives self.history = History(num_objectives=self.num_objectives) self.training = Variable() self.predictor_list = [None for _ in range(self.num_objectives)] self.test = self._make_variable_X(test_X) self.new_data = None self.actions = np.arange(0, test_X.shape[0]) if config is None: self.config = SetConfig() else: self.config = config self.TS_candidate_num = None if initial_data is not None: if len(initial_data) != 2: msg = "ERROR: initial_data should be 2-elements tuple or list (actions and objectives)" raise RuntimeError(msg) actions, fs = initial_data if fs.shape[1] != self.num_objectives: msg = "ERROR: initial_data[1].shape[1] != num_objectives" raise RuntimeError(msg) if len(actions) != fs.shape[0]: msg = "ERROR: len(initial_data[0]) != initial_data[1].shape[0]" raise RuntimeError(msg) self.write(actions, fs) self.actions = np.array(sorted(list(set(self.actions) - set(actions)))) if comm is None: self.mpicomm = None self.mpisize = 1 self.mpirank = 0 else: self.mpicomm = comm self.mpisize = comm.size self.mpirank = comm.rank self.actions = np.array_split(self.actions, self.mpisize)[self.mpirank]
[docs] def write( self, action, t, X=None, time_total=None, time_update_predictor=None, time_get_action=None, time_run_simulator=None, ): self.history.write( t, action, time_total=time_total, time_update_predictor=time_update_predictor, time_get_action=time_get_action, time_run_simulator=time_run_simulator, ) action = np.array(action) N = len(action) t = np.array(t) # Ensure t is 2D: shape (N, num_objectives) if t.ndim == 1: if N == 1: t = t.reshape(1, -1) else: raise ValueError(f"Number of actions is {N} > 1, but t is 1D array") assert action.shape[0] == t.shape[0], "The number of actions and t must be the same" assert t.shape[1] == self.num_objectives, "The number of objectives in t must be the same as num_objectives" # Determine X and Z (different for each objective) if X is None: X = self.test.X[action, :] Z = self.test.Z[:, action, :] if self.test.Z is not None else None else: if self.predictor_list[0] is not None: z = [] for p in self.predictor_list: z.append(p.get_basis(X)) if z[0] is not None: Z = np.stack(z, axis=0) else: Z = None else: Z = None if self.new_data is None: self.new_data = Variable(X=X, t=t, Z=Z) else: self.new_data.add(X=X, t=t, Z=Z) # Add to single training Variable with full 2D t matrix and (k, N, n) Z if self.training.X is None: self.training = Variable(X=X, t=t, Z=Z) else: self.training.add(X=X, t=t, Z=Z) # remove action from candidates if exists if len(self.actions) > 0: local_index = np.searchsorted(self.actions, action) local_index = local_index[ np.take(self.actions, local_index, mode="clip") == action ] self.actions = self._delete_actions(local_index)
def _get_actions(self, mode, N, K, alpha): f = self.get_score(mode=mode, alpha=alpha, parallel=False) champion, local_champion, local_index = self._find_champion(f) if champion == -1: return np.zeros(0, dtype=int) if champion == local_champion: self.actions = self._delete_actions(local_index) chosen_actions = [champion] for n in range(1, N): f = self._get_marginal_score(mode, chosen_actions[0:n], K, alpha) champion, local_champion, local_index = self._find_champion(f) if champion == -1: break if champion == local_champion: self.actions = self._delete_actions(local_index) chosen_actions.append(champion) return np.array(chosen_actions)
[docs] def get_post_fmean(self, xs): """ Calculate mean value of predictors (post distribution) Parameters ---------- xs: physbo.Variable or np.ndarray input parameters to calculate covariance shape is (num_points, num_parameters) diag: bool If true, only variances (diagonal elements) are returned. Returns ------- fcov: numpy.ndarray Covariance matrix of the post distribution. Returned shape is (num_points, num_objectives). """ if self.predictor_list == [None] * self.num_objectives: self._warn_no_predictor("get_post_fmean()") predictor_list = [] for i in range(self.num_objectives): predictor = gp_predictor(self.config) predictor.fit(self.training, 0, comm=self.mpicomm, objective_index=i) predictor.prepare(self.training, objective_index=i) predictor_list.append(predictor) else: self._update_predictor() predictor_list = self.predictor_list[:] X = self._make_variable_X(xs) fmean = [ predictor.get_post_fmean(self.training, X, objective_index=i) for i, predictor in enumerate(predictor_list) ] return np.array(fmean).T
[docs] def get_post_fcov(self, xs, diag=True): """ Calculate covariance of predictors (post distribution) Parameters ---------- xs: physbo.Variable or np.ndarray input parameters to calculate covariance shape is (num_points, num_parameters) diag: bool If true, only variances (diagonal elements) are returned. Returns ------- fcov: numpy.ndarray Covariance matrix of the post distribution. Returned shape is (num_points, num_objectives) if diag=true, (num_points, num_points, num_objectives) if diag=false. """ if self.predictor_list == [None] * self.num_objectives: self._warn_no_predictor("get_post_fcov()") predictor_list = [] for i in range(self.num_objectives): predictor = gp_predictor(self.config) predictor.fit(self.training, 0, comm=self.mpicomm, objective_index=i) predictor.prepare(self.training, objective_index=i) predictor_list.append(predictor) else: self._update_predictor() predictor_list = self.predictor_list[:] X = self._make_variable_X(xs) fcov = [ predictor.get_post_fcov(self.training, X, diag, objective_index=i) for i, predictor in enumerate(predictor_list) ] arr = np.array(fcov) if diag: return arr.T else: return np.einsum("nij->ijn", arr)
[docs] def get_score( self, mode, actions=None, xs=None, predictor_list=None, training_list=None, pareto=None, parallel=True, alpha=1, ): if training_list is None: training = self.training else: training = training_list if pareto is None: pareto = self.history.pareto if training.X is None or training.X.shape[0] == 0: msg = "ERROR: No training data is registered." raise RuntimeError(msg) if predictor_list is None: if self.predictor_list == [None] * self.num_objectives: self._warn_no_predictor("get_score()") predictor_list = [] for i in range(self.num_objectives): predictor = gp_predictor(self.config) predictor.fit(training, 0, comm=self.mpicomm, objective_index=i) predictor.prepare(training, objective_index=i) predictor_list.append(predictor) else: self._update_predictor() predictor_list = self.predictor_list if xs is not None: if actions is not None: raise RuntimeError("ERROR: both actions and xs are given") if isinstance(xs, Variable): test = xs else: test = Variable(X=xs) if parallel and self.mpisize > 1: actions = np.array_split(np.arange(test.X.shape[0]), self.mpisize) test = test.get_subset(actions[self.mpirank]) else: if actions is None: actions = self.actions else: if isinstance(actions, int): actions = [actions] if parallel and self.mpisize > 1: actions = np.array_split(actions, self.mpisize)[self.mpirank] test = self.test.get_subset(actions) f = search_score.score( mode, predictor_list=predictor_list, training=training, test=test, pareto=pareto, reduced_candidate_num=self.TS_candidate_num, alpha=alpha, ) if parallel and self.mpisize > 1: fs = self.mpicomm.allgather(f) f = np.hstack(fs) return f
[docs] def get_permutation_importance(self, n_perm: int, split_features_parallel=False): """ Calculate permutation importance of models Parameters ---------- n_perm: int The number of permutations split_features_parallel: bool If true, split features in parallel. Returns ------- importance_mean: numpy.ndarray importance_mean (num_parameters, num_objectives) importance_std: numpy.ndarray importance_std (num_parameters, num_objectives) """ if self.predictor_list == [None] * self.num_objectives: self._warn_no_predictor("get_post_fmean()") predictor_list = [] for i in range(self.num_objectives): predictor = gp_predictor(self.config) predictor.fit(self.training, 0, objective_index=i) predictor.prepare(self.training, objective_index=i) predictor_list.append(predictor) else: self._update_predictor() predictor_list = self.predictor_list[:] importance_mean = [None for _ in range(self.num_objectives)] importance_std = [None for _ in range(self.num_objectives)] for i in range(self.num_objectives): importance_mean[i], importance_std[i] = predictor_list[ i ].get_permutation_importance( self.training, n_perm, comm=self.mpicomm, split_features_parallel=split_features_parallel, objective_index=i, ) return np.array(importance_mean).T, np.array(importance_std).T
def _get_marginal_score(self, mode, chosen_actions, K, alpha): """ Getting marginal scores. Parameters ---------- mode: str The type of aquision funciton. TS (Thompson Sampling), EI (Expected Improvement) and PI (Probability of Improvement) are available. These functions are defined in score.py. chosen_actions: numpy.ndarray Array of selected actions. K: int The total number of search candidates. alpha: float not used. Returns ------- f: list N dimensional scores (score is defined in each mode) """ f = np.zeros((K, len(self.actions)), dtype=float) N = len(chosen_actions) # draw K samples of the values of objective function of chosen actions new_test_local = self.test.get_subset(chosen_actions) virtual_t_local = np.zeros((K, N, self.num_objectives)) for i in range(self.num_objectives): virtual_t_local[:, :, i] = self.predictor_list[i].get_predict_samples( self.training, new_test_local, K, objective_index=i ) if self.mpisize == 1: new_test = new_test_local virtual_t = virtual_t_local else: new_test = Variable() virtual_t = np.zeros((K, 0, self.num_objectives)) for nt in self.mpicomm.allgather(new_test_local): new_test.add(X=nt.X, t=nt.t, Z=nt.Z) for vt in self.mpicomm.allgather(virtual_t_local): virtual_t = np.concatenate((virtual_t, vt), axis=1) for k in range(K): predictor_list = [copy.deepcopy(p) for p in self.predictor_list] virtual_train = copy.deepcopy(new_test) virtual_train.t = virtual_t[k, :, :] training_k = copy.deepcopy(self.training) training_k.add(X=virtual_train.X, t=virtual_train.t, Z=virtual_train.Z) for i in range(self.num_objectives): predictor_list[i].update(training_k, virtual_train, objective_index=i) f[k, :] = self.get_score( mode, predictor_list=predictor_list, training_list=training_k, parallel=False, ) return np.mean(f, axis=0)
[docs] def save(self, file_history, file_training_list=None, file_predictor_list=None): if self.mpirank == 0: self.history.save(file_history) if file_training_list is not None: self.save_training_list(file_training_list) if file_predictor_list is not None: self.save_predictor_list(file_predictor_list)
[docs] def load(self, file_history, file_training_list=None, file_predictor_list=None): self.history.load(file_history) if file_training_list is None: N = self.history.total_num_search X = self.test.X[self.history.chosen_actions[0:N], :] t = self.history.fx[0:N] self.training = Variable(X=X, t=t) else: self.load_training_list(file_training_list) if file_predictor_list is not None: self.load_predictor_list(file_predictor_list) N = self.history.total_num_search visited = self.history.chosen_actions[:N] local_index = np.searchsorted(self.actions, visited) local_index = local_index[ np.take(self.actions, local_index, mode="clip") == visited ] self.actions = self._delete_actions(local_index)
[docs] def save_predictor_list(self, file_name): with open(file_name, "wb") as f: pickle.dump(self.predictor_list, f, 2)
[docs] def save_training_list(self, file_name): obj = {"X": self.training.X, "t": self.training.t, "Z": self.training.Z} with open(file_name, "wb") as f: pickle.dump(obj, f, 2)
[docs] def load_predictor_list(self, file_name): with open(file_name, "rb") as f: self.predictor_list = pickle.load(f)
[docs] def load_training_list(self, file_name): with open(file_name, "rb") as f: data = pickle.load(f) # Handle both old format (list) and new format (dict/Variable) if isinstance(data, list): # Old format: list of dicts, convert to single Variable X = data[0]["X"] Z = np.stack([d["Z"] for d in data], axis=0) t = np.stack([d["t"] for d in data], axis=1) self.training = Variable(X=X, t=t, Z=Z) elif isinstance(data, dict): # New format: single dict self.training = Variable(X=data["X"], t=data["t"], Z=data["Z"]) else: # Assume it's already a Variable self.training = data
def _learn_hyperparameter(self, num_rand_basis): # Collect Z for each objective training_Z_list = [] test_Z_list = [] for i in range(self.num_objectives): predictor = self.predictor_list[i] predictor.fit( self.training, num_rand_basis, comm=self.mpicomm, objective_index=i ) # Get basis for this objective test_Z_basis = predictor.get_basis(self.test.X) training_Z_basis = predictor.get_basis(self.training.X) # Collect Z for test and training (will be combined into (k, N, n)) test_Z_list.append(test_Z_basis) training_Z_list.append(training_Z_basis) # Update test.Z and training.Z with (k, N, n) format if all(z is not None for z in test_Z_list): self.test.Z = np.stack( test_Z_list, axis=0 ) # Each Z_i is (N, n), stack to (k, N, n) if all(z is not None for z in training_Z_list): self.training.Z = np.stack( training_Z_list, axis=0 ) # Each Z_i is (N, n), stack to (k, N, n) for i in range(self.num_objectives): self.predictor_list[i].prepare(self.training, objective_index=i) self.new_data = None def _update_predictor(self): if self.new_data is not None: for i in range(self.num_objectives): self.predictor_list[i].update( self.training, self.new_data, objective_index=i ) self.new_data = None
def _run_simulator(simulator, action, comm=None): if comm is None: return simulator(action) if comm.rank == 0: t = simulator(action) else: t = 0.0 return comm.bcast(t, root=0)