Source code for physbo.search.range_multi._policy

# SPDX-License-Identifier: MPL-2.0
# Copyright (C) 2020- The University of Tokyo
#
# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at https://mozilla.org/MPL/2.0/.

import numpy as np
import copy
import pickle as pickle
import time

from ._history import History
from .. import range as range_single
from .. import utility
from .. import score_multi as search_score
from ..optimize.random import Optimizer as RandomOptimizer
from ...gp import Predictor as gp_predictor
from ...blm import Predictor as blm_predictor
from ...misc import SetConfig
from ..._variable import Variable


[docs] class Policy(range_single.Policy): """Multi objective Bayesian optimization with continuous search space""" def __init__( self, num_objectives, *, min_X=None, max_X=None, comm=None, config=None, initial_data=None, ): if min_X is None or max_X is None: raise ValueError("min_X and max_X must be specified") self.min_X = np.array(min_X) self.max_X = np.array(max_X) self.L_X = self.max_X - self.min_X self.dim = self.min_X.shape[0] self.num_objectives = num_objectives self.history = History(num_objectives=self.num_objectives, dim=self.dim) self.training = Variable() self.predictor_list = [None for _ in range(self.num_objectives)] self.new_data = None if config is None: self.config = SetConfig() else: self.config = config self.TS_candidate_num = None if initial_data is not None: if len(initial_data) != 2: msg = "ERROR: initial_data should be 2-elements tuple or list (actions and objectives)" raise RuntimeError(msg) init_X, fs = initial_data assert init_X.shape[0] == len(fs), ( "The number of initial data must be the same" ) assert init_X.shape[1] == self.dim, ( "The dimension of initial_data[0] must be the same as the dimension of min_X and max_X" ) ## TODO: add initial data to the history ## The following code is for discrete search ## self.write(actions, fs) ## self.actions = np.array(sorted(list(set(self.actions) - set(actions)))) if comm is None: self.mpicomm = None self.mpisize = 1 self.mpirank = 0 else: self.mpicomm = comm self.mpisize = comm.size self.mpirank = comm.rank self.actions = np.array_split(self.actions, self.mpisize)[self.mpirank]
[docs] def write( self, X, t, time_total=None, time_update_predictor=None, time_get_action=None, time_run_simulator=None, ): self.history.write( t, X, time_total=time_total, time_update_predictor=time_update_predictor, time_get_action=time_get_action, time_run_simulator=time_run_simulator, ) N = X.shape[0] t = np.array(t) # Ensure t is 2D: shape (N, num_objectives) if t.ndim == 1: if N == 1: t = t.reshape(1, -1) else: raise ValueError(f"Number of actions is {N} > 1, but t is 1D array") assert X.shape[0] == t.shape[0], "The number of X and t must be the same" assert X.shape[1] == self.dim, ( "The dimension of X must be the same as the dimension of min_X and max_X" ) assert t.shape[1] == self.num_objectives, "The number of objectives in t must be the same as num_objectives" if self.predictor_list[0] is not None: z = [] for p in self.predictor_list: z.append(p.get_basis(X)) if z[0] is not None: Z = np.stack(z, axis=0) else: Z = None else: Z = None if self.new_data is None: self.new_data = Variable(X=X, t=t, Z=Z) else: self.new_data.add(X=X, t=t, Z=Z) # Add to single training Variable with full 2D t matrix and (k, N, n) Z if self.training.X is None: self.training = Variable(X=X, t=t, Z=Z) else: self.training.add(X=X, t=t, Z=Z)
def _argmax_score(self, mode, predictors, training, virtual_trainings, optimizer): """ Get the action that maximizes the score. Arguments ---------- mode: str The type of aquision funciton. TS (Thompson Sampling), EI (Expected Improvement) and PI (Probability of Improvement) are available. These functions are defined in score.py. predictors: list[Predictor] List of predictors. training: Variable Training data. virtual_trainings: list[Variable] List of extra training data. optimizer: Function or Optimizer object Optimizer object for optimizing the acquisition function. """ K = len(virtual_trainings) if K == 0: for i, predictor in enumerate(predictors): predictor.prepare(training, objective_index=i) def fn(x): return self.get_score( mode, xs=x.reshape(1, -1), predictor_list=predictors, training_list=training, parallel=False, )[0] else: # marginal score trains_k = [copy.deepcopy(training) for _ in range(K)] predictors_k = [copy.deepcopy(predictors) for _ in range(K)] for predictor, training, virtual_training in zip( predictors_k, trains_k, virtual_trainings ): training.add( X=virtual_training.X, t=virtual_training.t, Z=virtual_training.Z ) for i in range(self.num_objectives): predictor[i].update(training, virtual_training, objective_index=i) def fn(x): f = np.zeros(K) for k in range(K): f[k] = self.get_score( mode, xs=x.reshape(1, -1), predictor_list=predictors_k[k], training_list=trains_k[k], parallel=False, )[0] return np.mean(f) X = optimizer(fn, mpicomm=self.mpicomm) return X def _get_actions(self, mode, N, K, alpha, optimizer, num_rand_basis=0): X = np.zeros((N, self.dim)) self._update_predictor() predictors = [copy.deepcopy(predictor) for predictor in self.predictor_list] for i, predictor in enumerate(predictors): predictor.config.is_disp = False predictor.prepare(self.training, objective_index=i) X[0, :] = self._argmax_score( mode, predictors, self.training, [], optimizer=optimizer ) for n in range(1, N): virtual_trainings = [Variable(X=X[0:n, :]) for _ in range(K)] virtual_t = np.zeros((K, n, self.num_objectives)) for i in range(self.num_objectives): virtual_t[:, :, i] = predictors[i].get_predict_samples( self.training, virtual_trainings[0], K, objective_index=i ) for k in range(K): virtual_trainings[k].t = virtual_t[k, :, :] X[n, :] = self._argmax_score( mode, predictors, self.training, virtual_trainings, optimizer=optimizer, ) return X
[docs] def get_post_fmean(self, xs): """ Calculate mean value of predictors (post distribution) Parameters ---------- xs: physbo.Variable or np.ndarray input parameters to calculate covariance shape is (num_points, num_parameters) diag: bool If true, only variances (diagonal elements) are returned. Returns ------- fcov: numpy.ndarray Covariance matrix of the post distribution. Returned shape is (num_points, num_objectives). """ if self.predictor_list == [None] * self.num_objectives: self._warn_no_predictor("get_post_fmean()") predictor_list = [] for i in range(self.num_objectives): predictor = gp_predictor(self.config) predictor.fit(self.training, 0, comm=self.mpicomm, objective_index=i) predictor.prepare(self.training, objective_index=i) predictor_list.append(predictor) else: self._update_predictor() predictor_list = self.predictor_list[:] X = self._make_variable_X(xs) fmean = [ predictor.get_post_fmean(self.training, X, objective_index=i) for i, predictor in enumerate(predictor_list) ] return np.array(fmean).T
[docs] def get_post_fcov(self, xs, diag=True): """ Calculate covariance of predictors (post distribution) Parameters ---------- xs: physbo.Variable or np.ndarray input parameters to calculate covariance shape is (num_points, num_parameters) diag: bool If true, only variances (diagonal elements) are returned. Returns ------- fcov: numpy.ndarray Covariance matrix of the post distribution. Returned shape is (num_points, num_objectives) if diag=true, (num_points, num_points, num_objectives) if diag=false. """ if self.predictor_list == [None] * self.num_objectives: self._warn_no_predictor("get_post_fcov()") predictor_list = [] for i in range(self.num_objectives): predictor = gp_predictor(self.config) predictor.fit(self.training, 0, comm=self.mpicomm, objective_index=i) predictor.prepare(self.training, objective_index=i) predictor_list.append(predictor) else: self._update_predictor() predictor_list = self.predictor_list[:] X = self._make_variable_X(xs) fcov = [ predictor.get_post_fcov(self.training, X, diag, objective_index=i) for i, predictor in enumerate(predictor_list) ] arr = np.array(fcov) if diag: return arr.T else: return np.einsum("nij->ijn", arr)
[docs] def get_score( self, mode, *, xs=None, predictor_list=None, training_list=None, pareto=None, parallel=True, alpha=1, ): if training_list is None: training = self.training else: training = training_list if pareto is None: pareto = self.history.pareto if training.X is None or training.X.shape[0] == 0: msg = "ERROR: No training data is registered." raise RuntimeError(msg) if predictor_list is None: if self.predictor_list == [None] * self.num_objectives: self._warn_no_predictor("get_score()") predictor_list = [] for i in range(self.num_objectives): predictor = gp_predictor(self.config) predictor.fit(training, 0, comm=self.mpicomm, objective_index=i) predictor.prepare(training, objective_index=i) predictor_list.append(predictor) else: self._update_predictor() predictor_list = self.predictor_list if xs is not None: if isinstance(xs, Variable): test = xs else: test = Variable(X=xs) if parallel and self.mpisize > 1: actions = np.array_split(np.arange(test.X.shape[0]), self.mpisize) test = test.get_subset(actions[self.mpirank]) else: raise RuntimeError("ERROR: xs is not given") f = search_score.score( mode, predictor_list=predictor_list, training=training, test=test, pareto=pareto, reduced_candidate_num=self.TS_candidate_num, alpha=alpha, ) if parallel and self.mpisize > 1: fs = self.mpicomm.allgather(f) f = np.hstack(fs) return f
[docs] def get_permutation_importance(self, n_perm: int, split_features_parallel=False): """ Calculate permutation importance of models Parameters ---------- n_perm: int The number of permutations split_features_parallel: bool If true, split features in parallel. Returns ------- importance_mean: numpy.ndarray importance_mean (num_parameters, num_objectives) importance_std: numpy.ndarray importance_std (num_parameters, num_objectives) """ if self.predictor_list == [None] * self.num_objectives: self._warn_no_predictor("get_post_fmean()") predictor_list = [] for i in range(self.num_objectives): predictor = gp_predictor(self.config) predictor.fit(self.training, 0, objective_index=i) predictor.prepare(self.training, objective_index=i) predictor_list.append(predictor) else: self._update_predictor() predictor_list = self.predictor_list[:] importance_mean = [None for _ in range(self.num_objectives)] importance_std = [None for _ in range(self.num_objectives)] for i in range(self.num_objectives): importance_mean[i], importance_std[i] = predictor_list[ i ].get_permutation_importance( self.training, n_perm, comm=self.mpicomm, split_features_parallel=split_features_parallel, objective_index=i, ) return np.array(importance_mean).T, np.array(importance_std).T
[docs] def save(self, file_history, file_training_list=None, file_predictor_list=None): if self.mpirank == 0: self.history.save(file_history) if file_training_list is not None: self.save_training_list(file_training_list) if file_predictor_list is not None: self.save_predictor_list(file_predictor_list)
[docs] def load(self, file_history, file_training_list=None, file_predictor_list=None): self.history.load(file_history) if file_training_list is None: N = self.history.total_num_search X = self.history.action_X[0:N, :] t = self.history.fx[0:N, :] self.training = Variable(X=X, t=t) else: self.load_training_list(file_training_list) if file_predictor_list is not None: self.load_predictor_list(file_predictor_list) N = self.history.total_num_search
[docs] def save_predictor_list(self, file_name): with open(file_name, "wb") as f: pickle.dump(self.predictor_list, f, 2)
[docs] def save_training_list(self, file_name): obj = {"X": self.training.X, "t": self.training.t, "Z": self.training.Z} with open(file_name, "wb") as f: pickle.dump(obj, f, 2)
[docs] def load_predictor_list(self, file_name): with open(file_name, "rb") as f: self.predictor_list = pickle.load(f)
[docs] def load_training_list(self, file_name): with open(file_name, "rb") as f: data = pickle.load(f) # Handle both old format (list) and new format (dict/Variable) if isinstance(data, list): # Old format: list of dicts, convert to single Variable X = data[0]["X"] Z = np.stack([d["Z"] for d in data], axis=0) t = np.stack([d["t"] for d in data], axis=1) self.training = Variable(X=X, t=t, Z=Z) elif isinstance(data, dict): # New format: single dict self.training = Variable(X=data["X"], t=data["t"], Z=data["Z"]) else: # Assume it's already a Variable self.training = data
def _learn_hyperparameter(self, num_rand_basis): # Collect Z for each objective Z_list = [] training = self.training for i in range(self.num_objectives): predictor = self.predictor_list[i] predictor.fit( training, num_rand_basis, comm=self.mpicomm, objective_index=i ) # Collect Z for training (will be combined into (k, N, n)) training_Z_basis = predictor.get_basis(training.X) Z_list.append(training_Z_basis) predictor.prepare(training, objective_index=i) # Update training.Z with (k, N, n) format if all(z is not None for z in Z_list): # Stack along first dimension: (k, N, n) self.training.Z = np.stack( Z_list, axis=0 ) # Each Z_i is (N, n), stack to (k, N, n) self.new_data = None def _update_predictor(self): if self.new_data is not None: for i in range(self.num_objectives): self.predictor_list[i].update( self.training, self.new_data, objective_index=i ) self.new_data = None
def _run_simulator(simulator, action_X, comm=None): if comm is None: return simulator(action_X) if comm.rank == 0: t = simulator(action_X) else: t = 0.0 return comm.bcast(t, root=0)