physbo.blm.lik package
Module contents
- class physbo.blm.lik.Cov(params=None)[source]
Bases:
object
Covariance
- params
half of log of variance
- Type:
float
- nparams
number of parameters
- Type:
int
- sigma2
variance
- Type:
float
- prec
inv. of variance
- Type:
float
- get_cov(N, params=None)[source]
compute the covariance of prior
- Parameters:
N (int) – dimension
params – half of log of variance (default: self.params)
- Returns:
NxN covariance matrix
- Return type:
numpy.ndarray
- class physbo.blm.lik.Gauss(linear, cov)[source]
Bases:
object
Gaussian
- linear
linear kernel
- Type:
- cov
covariance
- Type:
- stats
- get_basis(X)[source]
calculates value of basis function at input
- Parameters:
X (numpy.ndarray) – input
See also
physbo.blm.basis.fourier.get_basis
- get_cov(N, params=None)[source]
Returns covariance matrix
- Parameters:
N (int) – dimension
params (float) – half of log of variance (default: self.cov.params)
- Returns:
NxN covariance matrix
- Return type:
numpy.ndarray
- get_mean(X, Psi=None, params=None, bias=None)[source]
calculates mean value
- Parameters:
X (numpy.ndarray) – raw input
Psi (numpy.ndarray) – value of feature maps
params (numpy.ndarray) – weight
bias (float) – bias
See also
physbo.blm.basis.fourier.get_mean
- get_prec(N, params=None)[source]
Returns precision matrix
- Parameters:
N (int) – dimension
params (float) – half of log of variance (default: self.cov.params)
- Returns:
NxN precision matrix
- Return type:
numpy.ndarray
- class physbo.blm.lik.Linear(basis, params=None, bias=None)[source]
Bases:
object
- basis
basis for random feature map
- nbasis
number of basis
- Type:
int
- bias
- params
- get_mean(X, Psi=None, params=None, bias=None)[source]
calculate mean values
- Parameters:
X (numpy.ndarray) – input as an N-by-d matrix
Psi (numpy.ndarray) – feature maps
Psi(X)
as an N-by-l matrix (default: self.get_basis(X))params (numpy.ndarray) – weight as a vector with size l (default: self.params)
bias (float) – (default: self.bias)
- Returns:
Psi * params + bias
- Return type:
numpy.ndarray