Source code for physbo.blm.lik._cov

# SPDX-License-Identifier: MPL-2.0
# Copyright (C) 2020- The University of Tokyo
#
# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at https://mozilla.org/MPL/2.0/.

import numpy as np


[docs] class Cov: """ Covariance Attributes ========== params: float half of log of variance nparams: int number of parameters sigma2: float variance prec: float inv. of variance """ def __init__(self, params=None): self.params = params if self.params is None: self.params = np.log(1) self.nparams = 1 self.sigma2, self.prec = self._trans_params(params)
[docs] def get_cov(self, N, params=None): """ compute the covariance of prior Parameters ========== N: int dimension params: half of log of variance (default: self.params) Returns ======= numpy.ndarray NxN covariance matrix """ if params is None: params = self.params sigma2, prec = self._trans_params(params) return np.identity(N) * sigma2
[docs] def get_prec(self, N, params=None): """ compute the precision of prior Parameters ========== N: int dimension params: half of log of variance (default: self.params) Returns ======= numpy.ndarray inverse of covariance matrix """ if params is None: params = self.params sigma2, prec = self._trans_params(params) return np.identity(N) * prec
[docs] def set_params(self, params): """ set the parameter Parameters ========== params: float half of log of variance """ self.params = params self.sigma2, self.prec = self._trans_params(params)
def _trans_params(self, params=None): """ transform the parameter into variance and precision Parameters ========== params: float half of log of variance (default: self.params) Returns ======= sigma2: float variance prec: float precision (inv. of variance) """ if params is None: params = np.copy(self.params) sigma2 = np.exp(2 * params) prec = 1 / sigma2 return sigma2, prec