# SPDX-License-Identifier: MPL-2.0
# Copyright (C) 2020- The University of Tokyo
#
# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at https://mozilla.org/MPL/2.0/.
import numpy as np
import copy
import pickle as pickle
import time
from .results import history
from .. import discrete
from .. import utility
from .. import score_multi as search_score
from ...gp import predictor as gp_predictor
from ...blm import predictor as blm_predictor
from ...misc import set_config
from ...variable import variable
from typing import List, Optional
[docs]
class policy(discrete.policy):
new_data_list: List[Optional[variable]]
def __init__(
self, test_X, num_objectives, comm=None, config=None, initial_data=None
):
self.num_objectives = num_objectives
self.history = history(num_objectives=self.num_objectives)
self.training_list = [variable() for _ in range(self.num_objectives)]
self.predictor_list = [None for _ in range(self.num_objectives)]
self.test_list = [
self._make_variable_X(test_X) for _ in range(self.num_objectives)
]
self.new_data_list = [None for _ in range(self.num_objectives)]
self.actions = np.arange(0, test_X.shape[0])
if config is None:
self.config = set_config()
else:
self.config = config
self.TS_candidate_num = None
if initial_data is not None:
if len(initial_data) != 2:
msg = "ERROR: initial_data should be 2-elements tuple or list (actions and objectives)"
raise RuntimeError(msg)
actions, fs = initial_data
if fs.shape[1] != self.num_objectives:
msg = "ERROR: initial_data[1].shape[1] != num_objectives"
raise RuntimeError(msg)
if len(actions) != fs.shape[0]:
msg = "ERROR: len(initial_data[0]) != initial_data[1].shape[0]"
raise RuntimeError(msg)
self.write(actions, fs)
self.actions = np.array(sorted(list(set(self.actions) - set(actions))))
if comm is None:
self.mpicomm = None
self.mpisize = 1
self.mpirank = 0
else:
self.mpicomm = comm
self.mpisize = comm.size
self.mpirank = comm.rank
self.actions = np.array_split(self.actions, self.mpisize)[self.mpirank]
[docs]
def write(
self,
action,
t,
X=None,
time_total=None,
time_update_predictor=None,
time_get_action=None,
time_run_simulator=None,
):
self.history.write(
t,
action,
time_total=time_total,
time_update_predictor=time_update_predictor,
time_get_action=time_get_action,
time_run_simulator=time_run_simulator,
)
action = np.array(action)
t = np.array(t)
for i in range(self.num_objectives):
test = self.test_list[i]
predictor = self.predictor_list[i]
if X is None:
X = test.X[action, :]
Z = test.Z[action, :] if test.Z is not None else None
else:
Z = predictor.get_basis(X) if predictor is not None else None
if self.new_data_list[i] is None:
self.new_data_list[i] = variable(X, t[:, i], Z)
else:
self.new_data_list[i].add(X=X, t=t[:, i], Z=Z)
self.training_list[i].add(X=X, t=t[:, i], Z=Z)
# remove action from candidates if exists
if len(self.actions) > 0:
local_index = np.searchsorted(self.actions, action)
local_index = local_index[
np.take(self.actions, local_index, mode="clip") == action
]
self.actions = self._delete_actions(local_index)
def _model(self, i):
training = self.training_list[i]
predictor = self.predictor_list[i]
test = self.test_list[i]
new_data = self.new_data_list[i]
return {
"training": training,
"predictor": predictor,
"test": test,
"new_data": new_data,
}
[docs]
def random_search(
self,
max_num_probes,
num_search_each_probe=1,
simulator=None,
is_disp=True,
disp_pareto_set=False,
):
if self.mpirank != 0:
is_disp = False
N = int(num_search_each_probe)
if is_disp:
utility.show_interactive_mode(simulator, self.history)
for n in range(0, max_num_probes):
time_total = time.time()
if is_disp and N > 1:
utility.show_start_message_multi_search(
self.history.num_runs, score="random"
)
time_get_action = time.time()
action = self._get_random_action(N)
time_get_action = time.time() - time_get_action
if simulator is None:
return action
time_run_simulator = time.time()
t = _run_simulator(simulator, action, self.mpicomm)
time_run_simulator = time.time() - time_run_simulator
time_total = time.time() - time_total
self.write(
action,
t,
time_total=[time_total] * N,
time_update_predictor=np.zeros(N, dtype=float),
time_get_action=[time_get_action] * N,
time_run_simulator=[time_run_simulator] * N,
)
if is_disp:
utility.show_search_results_mo(
self.history, N, disp_pareto_set=disp_pareto_set
)
return copy.deepcopy(self.history)
[docs]
def bayes_search(
self,
training_list=None,
max_num_probes=None,
num_search_each_probe=1,
predictor_list=None,
is_disp=True,
disp_pareto_set=False,
simulator=None,
score="HVPI",
interval=0,
num_rand_basis=0,
):
if self.mpirank != 0:
is_disp = False
old_disp = self.config.learning.is_disp
self.config.learning.is_disp = is_disp
if max_num_probes is None:
max_num_probes = 1
simulator = None
is_rand_expans = False if num_rand_basis == 0 else True
if training_list is not None:
self.training_list = training_list
if predictor_list is None:
if is_rand_expans:
self.predictor_list = [
blm_predictor(self.config) for i in range(self.num_objectives)
]
else:
self.predictor_list = [
gp_predictor(self.config) for i in range(self.num_objectives)
]
else:
self.predictor_list = predictor_list
if max_num_probes == 0 and interval >= 0:
self._learn_hyperparameter(num_rand_basis)
N = int(num_search_each_probe)
for n in range(max_num_probes):
time_total = time.time()
time_update_predictor = time.time()
if utility.is_learning(n, interval):
self._learn_hyperparameter(num_rand_basis)
else:
self._update_predictor()
time_update_predictor = time.time() - time_update_predictor
if num_search_each_probe != 1:
utility.show_start_message_multi_search(self.history.num_runs, score)
time_get_action = time.time()
K = self.config.search.multi_probe_num_sampling
alpha = self.config.search.alpha
action = self._get_actions(score, N, K, alpha)
time_get_action = time.time() - time_get_action
N_indeed = len(action)
if N_indeed == 0:
if self.mpirank == 0:
print("WARNING: All actions have already searched.")
self.config.learning.is_disp = old_disp
return copy.deepcopy(self.history)
if simulator is None:
self.config.learning.is_disp = old_disp
return action
time_run_simulator = time.time()
t = _run_simulator(simulator, action, self.mpicomm)
time_run_simulator = time.time() - time_run_simulator
time_total = time.time() - time_total
self.write(
action,
t,
time_total=[time_total] * N_indeed,
time_update_predictor=[time_update_predictor] * N_indeed,
time_get_action=[time_get_action] * N_indeed,
time_run_simulator=[time_run_simulator] * N_indeed,
)
if is_disp:
utility.show_search_results_mo(
self.history, N, disp_pareto_set=disp_pareto_set
)
self._update_predictor()
self.config.learning.is_disp = old_disp
return copy.deepcopy(self.history)
def _get_actions(self, mode, N, K, alpha):
f = self.get_score(mode=mode, alpha=alpha, parallel=False)
champion, local_champion, local_index = self._find_champion(f)
if champion == -1:
return np.zeros(0, dtype=int)
if champion == local_champion:
self.actions = self._delete_actions(local_index)
chosen_actions = [champion]
for n in range(1, N):
f = self._get_marginal_score(mode, chosen_actions[0:n], K, alpha)
champion, local_champion, local_index = self._find_champion(f)
if champion == -1:
break
if champion == local_champion:
self.actions = self._delete_actions(local_index)
chosen_actions.append(champion)
return np.array(chosen_actions)
[docs]
def get_post_fmean(self, xs):
if self.predictor_list == [None] * self.num_objectives:
self._warn_no_predictor("get_post_fmean()")
predictor_list = []
for i in range(self.num_objectives):
predictor = gp_predictor(self.config)
predictor.fit(self.training_list[i], 0)
predictor.prepare(self.training_list[i])
predictor_list.append(predictor)
else:
self._update_predictor()
predictor_list = self.predictor_list[:]
X = self._make_variable_X(xs)
fmean = [
predictor.get_post_fmean(training, X)
for predictor, training in zip(predictor_list, self.training_list)
]
return np.array(fmean).T
[docs]
def get_post_fcov(self, xs):
if self.predictor_list == [None] * self.num_objectives:
self._warn_no_predictor("get_post_fcov()")
predictor_list = []
for i in range(self.num_objectives):
predictor = gp_predictor(self.config)
predictor.fit(self.training_list[i], 0)
predictor.prepare(self.training_list[i])
predictor_list.append(predictor)
else:
self._update_predictor()
predictor_list = self.predictor_list[:]
X = self._make_variable_X(xs)
fcov = [
predictor.get_post_fcov(training, X)
for predictor, training in zip(predictor_list, self.training_list)
]
return np.array(fcov).T
[docs]
def get_score(
self,
mode,
actions=None,
xs=None,
predictor_list=None,
training_list=None,
pareto=None,
parallel=True,
alpha=1,
):
if training_list is None:
training_list = self.training_list
if pareto is None:
pareto = self.history.pareto
if training_list[0].X is None or training_list[0].X.shape[0] == 0:
msg = "ERROR: No training data is registered."
raise RuntimeError(msg)
if predictor_list is None:
if self.predictor_list == [None] * self.num_objectives:
self._warn_no_predictor("get_score()")
predictor_list = []
for i in range(self.num_objectives):
predictor = gp_predictor(self.config)
predictor.fit(training_list[i], 0)
predictor.prepare(training_list[i])
predictor_list.append(predictor)
else:
self._update_predictor()
predictor_list = self.predictor_list
if xs is not None:
if actions is not None:
raise RuntimeError("ERROR: both actions and xs are given")
if isinstance(xs, variable):
test = xs
else:
test = variable(X=xs)
if parallel and self.mpisize > 1:
actions = np.array_split(np.arange(test.X.shape[0]), self.mpisize)
test = test.get_subset(actions[self.mpirank])
else:
if actions is None:
actions = self.actions
else:
if isinstance(actions, int):
actions = [actions]
if parallel and self.mpisize > 1:
actions = np.array_split(actions, self.mpisize)[self.mpirank]
test = self.test_list[0].get_subset(actions)
f = search_score.score(
mode,
predictor_list=predictor_list,
training_list=training_list,
test=test,
pareto=pareto,
reduced_candidate_num=self.TS_candidate_num,
alpha=alpha,
)
if parallel and self.mpisize > 1:
fs = self.mpicomm.allgather(f)
f = np.hstack(fs)
return f
def _get_marginal_score(self, mode, chosen_actions, K, alpha):
"""
Getting marginal scores.
Parameters
----------
mode: str
The type of aquision funciton.
TS (Thompson Sampling), EI (Expected Improvement) and PI (Probability of Improvement) are available.
These functions are defined in score.py.
chosen_actions: numpy.ndarray
Array of selected actions.
K: int
The total number of search candidates.
alpha: float
not used.
Returns
-------
f: list
N dimensional scores (score is defined in each mode)
"""
f = np.zeros((K, len(self.actions)), dtype=float)
# draw K samples of the values of objective function of chosen actions
new_test_list = [variable() for _ in range(self.num_objectives)]
virtual_t_list = [np.zeros((K, 0)) for _ in range(self.num_objectives)]
for i in range(self.num_objectives):
new_test_local = self.test_list[i].get_subset(chosen_actions)
virtual_t_local = self.predictor_list[i].get_predict_samples(
self.training_list[i], new_test_local, K
)
if self.mpisize == 1:
new_test_list[i] = new_test_local
virtual_t_list[i] = virtual_t_local
else:
for nt in self.mpicomm.allgather(new_test_local):
new_test_list[i].add(X=nt.X, t=nt.t, Z=nt.Z)
virtual_t_list[i] = np.concatenate(
self.mpicomm.allgather(virtual_t_local), axis=1
)
for k in range(K):
predictor_list = [copy.deepcopy(p) for p in self.predictor_list]
training_list = [copy.deepcopy(t) for t in self.training_list]
for i in range(self.num_objectives):
virtual_train = new_test_list[i]
virtual_train.t = virtual_t_list[i][k, :]
if virtual_train.Z is None:
training_list[i].add(virtual_train.X, virtual_train.t)
else:
training_list[i].add(
virtual_train.X, virtual_train.t, virtual_train.Z
)
predictor_list[i].update(training_list[i], virtual_train)
f[k, :] = self.get_score(
mode,
predictor_list=predictor_list,
training_list=training_list,
parallel=False,
)
return np.mean(f, axis=0)
[docs]
def save(self, file_history, file_training_list=None, file_predictor_list=None):
if self.mpirank == 0:
self.history.save(file_history)
if file_training_list is not None:
self.save_training_list(file_training_list)
if file_predictor_list is not None:
self.save_predictor_list(file_predictor_list)
[docs]
def load(self, file_history, file_training_list=None, file_predictor_list=None):
self.history.load(file_history)
if file_training_list is None:
N = self.history.total_num_search
X = self.test_list[0].X[self.history.chosen_actions[0:N], :]
t = self.history.fx[0:N]
self.training_list = [
variable(X=X, t=t[:, i]) for i in range(self.num_objectives)
]
else:
self.load_training_list(file_training_list)
if file_predictor_list is not None:
self.load_predictor_list(file_predictor_list)
N = self.history.total_num_search
visited = self.history.chosen_actions[:N]
local_index = np.searchsorted(self.actions, visited)
local_index = local_index[
np.take(self.actions, local_index, mode="clip") == visited
]
self.actions = self._delete_actions(local_index)
[docs]
def save_predictor_list(self, file_name):
with open(file_name, "wb") as f:
pickle.dump(self.predictor_list, f, 2)
[docs]
def save_training_list(self, file_name):
obj = [
{"X": training.X, "t": training.t, "Z": training.Z}
for training in self.training_list
]
with open(file_name, "wb") as f:
pickle.dump(obj, f, 2)
[docs]
def load_predictor_list(self, file_name):
with open(file_name, "rb") as f:
self.predictor_list = pickle.load(f)
[docs]
def load_training_list(self, file_name):
with open(file_name, "rb") as f:
data_list = pickle.load(f)
self.training_list = [variable() for i in range(self.num_objectives)]
for data, training in zip(data_list, self.training_list):
training.X = data["X"]
training.t = data["t"]
training.Z = data["Z"]
def _learn_hyperparameter(self, num_rand_basis):
for i in range(self.num_objectives):
m = self._model(i)
predictor = m["predictor"]
training = m["training"]
test = m["test"]
predictor.fit(training, num_rand_basis)
test.Z = predictor.get_basis(test.X)
training.Z = predictor.get_basis(training.X)
predictor.prepare(training)
self.new_data_list[i] = None
# self.predictor_list[i].fit(self.training_list[i], num_rand_basis)
# self.test_list[i].Z = self.predictor_list[i].get_basis(self.test_list[i].X)
# self.training_list[i].Z = self.predictor_list[i].get_basis(self.training_list[i].X)
# self.predictor_list[i].prepare(self.training_list[i])
# self.new_data_list[i] = None
def _update_predictor(self):
for i in range(self.num_objectives):
if self.new_data_list[i] is not None:
self.predictor_list[i].update(
self.training_list[i], self.new_data_list[i]
)
self.new_data_list[i] = None
def _run_simulator(simulator, action, comm=None):
if comm is None:
return simulator(action)
if comm.rank == 0:
t = simulator(action)
else:
t = 0.0
return comm.bcast(t, root=0)