Source code for physbo.search.discrete_multi.results

# SPDX-License-Identifier: MPL-2.0
# Copyright (C) 2020- The University of Tokyo
#
# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at https://mozilla.org/MPL/2.0/.

import numpy as np
import pickle
import copy

from .. import pareto

MAX_SEARCH = int(30000)


[docs] class history(object): def __init__(self, num_objectives): self.num_objectives = num_objectives self.pareto = pareto.Pareto(num_objectives=self.num_objectives) self.num_runs = int(0) self.total_num_search = int(0) self.fx = np.zeros((MAX_SEARCH, self.num_objectives), dtype=float) self.chosen_actions = np.zeros(MAX_SEARCH, dtype=int) self.terminal_num_run = np.zeros(MAX_SEARCH, dtype=int) self._time_total = np.zeros(MAX_SEARCH, dtype=float) self._time_update_predictor = np.zeros(MAX_SEARCH, dtype=float) self._time_get_action = np.zeros(MAX_SEARCH, dtype=float) self._time_run_simulator = np.zeros(MAX_SEARCH, dtype=float) @property def time_total(self): return copy.copy(self._time_total[0 : self.num_runs]) @property def time_update_predictor(self): return copy.copy(self._time_update_predictor[0 : self.num_runs]) @property def time_get_action(self): return copy.copy(self._time_get_action[0 : self.num_runs]) @property def time_run_simulator(self): return copy.copy(self._time_run_simulator[0 : self.num_runs])
[docs] def write( self, t, action, time_total=None, time_update_predictor=None, time_get_action=None, time_run_simulator=None, ): t = np.array(t) action = np.array(action) if t.ndim == 1: N = 1 if len(t) != self.num_objectives: raise ValueError("t does not match the number of objectives") else: N = t.shape[0] if t.shape[1] != self.num_objectives: raise ValueError("t does not match the number of objectives") st = self.total_num_search en = st + N self.terminal_num_run[self.num_runs] = en self.fx[st:en] = t self.chosen_actions[st:en] = action self.num_runs += 1 self.total_num_search += N # update Pareto set self.pareto.update_front(t) if time_total is None: time_total = np.zeros(N, dtype=float) self._time_total[st:en] = time_total if time_update_predictor is None: time_update_predictor = np.zeros(N, dtype=float) self._time_update_predictor[st:en] = time_update_predictor if time_get_action is None: time_get_action = np.zeros(N, dtype=float) self._time_get_action[st:en] = time_get_action if time_run_simulator is None: time_run_simulator = np.zeros(N, dtype=float) self._time_run_simulator[st:en] = time_run_simulator
[docs] def export_pareto_front(self): return self.pareto.export_front()
[docs] def save(self, filename): N = self.total_num_search M = self.num_runs obj = { "num_runs": M, "total_num_search": N, "fx": self.fx[0:N], "chosen_actions": self.chosen_actions[0:N], "terminal_num_run": self.terminal_num_run[0:M], "pareto": self.pareto, } with open(filename, "wb") as f: pickle.dump(obj, f)
[docs] def load(self, filename): with open(filename, "rb") as f: data = pickle.load(f) M = data["num_runs"] N = data["total_num_search"] self.num_runs = M self.total_num_search = N self.fx[0:N] = data["fx"] self.chosen_actions[0:N] = data["chosen_actions"] self.terminal_num_run[0:M] = data["terminal_num_run"] self.pareto = data["pareto"]