physbo.blm.core.model module
- class physbo.blm.core.model.model(lik, prior, options={})[source]
Bases:
object
Baysean Linear Model
- prior
prior distribution of weights
- Type:
physbo.blm.prior.gauss
- lik
kernel
- Type:
physbo.blm.lik.gauss
- nbasis
number of features in random feature map
- Type:
int
- stats
auxially parameters for sampling
- Type:
Tuple
- method
sampling method
- Type:
str
- get_post_fcov(X, Psi=None, diag=True)[source]
calculates posterior covariance of model
- Parameters:
X (numpy.ndarray) – inputs
Psi (numpy.ndarray) – feature maps (default: blm.lik.linear.basis.get_basis(X))
diag (bool) – if True, returns only variances as a diagonal matrix (default: True)
- Return type:
numpy.ndarray
See also
- get_post_fmean(X, Psi=None, w=None)[source]
calculates posterior mean of model (function)
- Parameters:
X (numpy.ndarray) – inputs
Psi (numpy.ndarray) – feature maps
w (numpy.ndarray) – weight
See also
- post_sampling(Xtest, Psi=None, N=1, alpha=1.0)[source]
draws samples of mean value of model
- Parameters:
Xtest (numpy.ndarray) – inputs
Psi (numpy.ndarray) – feature maps (default:
blm.lik.get_basis(Xtest)
)N (int) – number of samples (default: 1)
alpha (float) – noise for sampling source
- Return type:
numpy.ndarray
- predict_sampling(Xtest, Psi=None, N=1)[source]
draws samples from model
- Parameters:
Xtest (numpy.ndarray) – inputs
Psi (numpy.ndarray) – feature map (default:
blm.lik.get_basis(Xtest)
)N (int) – number of samples (default: 1)
- Return type:
numpy.ndarray
- prepare(X, t, Psi=None)[source]
initializes model by using the first training dataset
- Parameters:
X (numpy.ndarray) – inputs
t (numpy.ndarray) – target (label)
Psi (numpy.ndarray) – feature maps
See also
- sampling(w_mu=None, N=1, alpha=1.0)[source]
draws samples of weights
- Parameters:
blm (physbo.blm.core.model) – model
w_mu (numpy.ndarray) – mean of weight
N (int) – the number of samples (default: 1)
alpha (float) – noise for sampling source (default: 1.0)
- Returns:
samples of weights
- Return type:
numpy.ndarray
See also