physbo.blm.lik.gauss module
- class physbo.blm.lik.gauss.gauss(linear, cov)[source]
Bases:
object
Gaussian
- linear
- cov
covariance
- Type:
blm.lik.cov
- stats
- get_basis(X)[source]
calculates value of basis function at input
- Parameters:
X (numpy.ndarray) – input
See also
blm.basis.fourier.get_basis
- get_cov(N, params=None)[source]
Returns covariance matrix
- Parameters:
N (int) – dimension
params (float) – half of log of variance (default: self.cov.params)
- Returns:
NxN covariance matrix
- Return type:
numpy.ndarray
- get_mean(X, Psi=None, params=None, bias=None)[source]
calculates mean value
- Parameters:
X (numpy.ndarray) – raw input
Psi (numpy.ndarray) – value of feature maps
params (numpy.ndarray) – weight
bias (float) – bias
See also
blm.basis.fourier.get_mean
- get_prec(N, params=None)[source]
Returns precision matrix
- Parameters:
N (int) – dimension
params (float) – half of log of variance (default: self.cov.params)
- Returns:
NxN precision matrix
- Return type:
numpy.ndarray