physbo.blm.predictor module
- class physbo.blm.predictor.predictor(config, model=None)[source]
Bases:
base_predictor
Predictor using Baysean linear model
- blm
- Type:
physbo.blm.core.model
- config
configuration
- Type:
physbo.misc.set_config
- fit(training, num_basis=None)[source]
fit model to training dataset
- Parameters:
training (physbo.variable) – dataset for training
num_basis (int) – the number of basis (default: self.config.predict.num_basis)
- get_basis(X)[source]
calculates feature maps Psi(X)
- Parameters:
X (numpy.ndarray) – inputs
- Returns:
Psi – feature maps
- Return type:
numpy.ndarray
- get_post_fcov(training, test)[source]
calculates posterior variance-covariance matrix of model
- Parameters:
training (physbo.variable) – training dataset. If already trained, the model does not use this.
test (physbo.variable) – inputs
- Return type:
numpy.ndarray
- get_post_fmean(training, test)[source]
calculates posterior mean value of model
- Parameters:
training (physbo.variable) – training dataset. If already trained, the model does not use this.
test (physbo.variable) – inputs
- Return type:
numpy.ndarray
- get_post_params(training, test)[source]
calculates posterior weights
- Parameters:
training (physbo.variable) – training dataset. If already trained, the model does not use this.
test (physbo.variable) – inputs (not used)
- Return type:
numpy.ndarray
- get_post_samples(training, test, N=1, alpha=1.0)[source]
draws samples of mean values of model
- Parameters:
training (physbo.variable) – training dataset. If already trained, the model does not use this.
test (physbo.variable) – inputs
N (int) – number of samples (default: 1)
alpha (float) – noise for sampling source (default: 1.0)
- Return type:
numpy.ndarray
- get_predict_samples(training, test, N=1)[source]
draws samples of values of model
- Parameters:
training (physbo.variable) – training dataset. If already trained, the model does not use this.
test (physbo.variable) – inputs
N (int) – number of samples (default: 1)
alpha (float) – noise for sampling source (default: 1.0)
- Return type:
numpy.ndarray (N x len(test))
- prepare(training)[source]
initializes model by using training data set
- Parameters:
training (physbo.variable) – dataset for training
- update(training, test)[source]
updates the model.
If not yet initialized (prepared), the model will be prepared by
training
. Otherwise, the model will be updated bytest
.- Parameters:
training (physbo.variable) – training dataset for initialization (preparation). If already prepared, the model ignore this.
test (physbo.variable) – training data for update. If not prepared, the model ignore this.