physbo.gp.lik.gauss module
- class physbo.gp.lik.gauss.gauss(std=1, max_params=1000000.0, min_params=1e-06)[source]
Bases:
object
Gaussian likelihood function
- get_cand_params(t)[source]
Getting candidate parameters.
- Parameters:
t (numpy.ndarray) – N dimensional array. The negative energy of each search candidate (value of the objective function to be optimized).
- Returns:
log[ standard deviation of t] - log 10.0
- Return type:
numpy.ndarray
- get_cov(num_data, params=None)[source]
Get a covariance matrix
- Parameters:
num_data (int)
params (numpy.ndarray) – Parameters for optimization. Array of real elements of size (n,), where ‘n’ is the number of independent variables.
- Returns:
Diagonal element matrix of exp(2.0*params)
- Return type:
numpy.ndarray
- get_grad(num_data, params=None)[source]
Get a gradient matrix
- Parameters:
num_data (int)
params (numpy.ndarray) – Parameters for optimization. Array of real elements of size (n,), where ‘n’ is the number of independent variables.
- Returns:
Diagonal element matrix of 2.0 * exp(2.0*params)
- Return type:
numpy.ndarray
- get_params_bound()[source]
Get boundary array.
- Returns:
bound – A num_params-dimensional array with the tuple (min_params, max_params).
- Return type:
list
- set_params(params)[source]
Set parameters.
- Parameters:
params (numpy.ndarray) – Parameters for optimization. Array of real elements of size (n,), where ‘n’ is the number of independent variables.