physbo.search.score module
- physbo.search.score.EI(predictor, training, test, fmax=None)[source]
Maximum expected improvement.
- Parameters:
predictor (predictor object) – Base class is defined in physbo.predictor.
training (physbo.variable) – Training dataset. If the predictor is not trained, use this for training.
test (physbo.variable) – Inputs
fmax (float) – Max value of posterior probability distribution. If not set, the maximum value of posterior mean for training is used.
- Returns:
score
- Return type:
numpy.ndarray
- physbo.search.score.PI(predictor, training, test, fmax=None)[source]
Maximum probability of improvement.
- Parameters:
predictor (predictor object) – Base class is defined in physbo.predictor.
training (physbo.variable) – Training dataset. If the predictor is not trained, use this for training.
test (physbo.variable) – Inputs
fmax (float) – Max value of posterior probability distribution. If not set, the maximum value of posterior mean for training is used.
- Returns:
score
- Return type:
numpy.ndarray
- physbo.search.score.TS(predictor, training, test, alpha=1)[source]
Thompson sampling (See Sec. 2.1 in Materials Discovery Volume 4, June 2016, Pages 18-21)
- Parameters:
predictor (predictor object) – Base class is defined in physbo.predictor.
training (physbo.variable) – Training dataset. If the predictor is not trained, use this for training.
test (physbo.variable) – Inputs
alpha (float) – noise for sampling source (default: 1.0)
- Returns:
score
- Return type:
numpy.ndarray
- physbo.search.score.score(mode, predictor, test, training=None, **kwargs)[source]
Calculate scores (acquisition function) for test data.
- Parameters:
mode (str) –
Kind of score.
”EI”, “PI”, and “TS” are available.
predictor (predictor object) – Base class is defined in physbo.predictor.
training (physbo.variable) – Training dataset. If the predictor is not trained, use this for training.
test (physbo.variable) – Inputs
fmax (float) – Max value of mean of posterior probability distribution. If not set, the maximum value of posterior mean for training is used. Used only for mode == “EI” and “PI”
alpha (float) – noise for sampling source (default: 1.0) Used only for mode == “TS”
- Returns:
score
- Return type:
numpy.ndarray
- Raises:
NotImplementedError – If unknown mode is given