physbo.variable のソースコード

# SPDX-License-Identifier: MPL-2.0
# Copyright (C) 2020- The University of Tokyo
#
# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at https://mozilla.org/MPL/2.0/.

import numpy as np


[ドキュメント] class variable(object): def __init__(self, X=None, t=None, Z=None): """ Parameters ---------- X: numpy array N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of each search candidate. t: numpy array N dimensional array. The negative energy of each search candidate (value of the objective function to be optimized). Z: """ self.X = X self.Z = Z self.t = t
[ドキュメント] def get_subset(self, index): """ Getting subset of variables. Parameters ---------- index: int or array of int Index of selected action. Returns ------- variable: physbo.variable """ temp_X = self.X[index, :] if self.X is not None else None temp_t = self.t[index] if self.t is not None else None temp_Z = self.Z[index, :] if self.Z is not None else None return variable(X=temp_X, t=temp_t, Z=temp_Z)
[ドキュメント] def delete(self, num_row): """ Deleting variables of X, t, Z whose indexes are specified by num_row. Parameters ---------- num_row: numpy array Index array to be deleted. Returns ------- """ self.delete_X(num_row) self.delete_t(num_row) self.delete_Z(num_row)
[ドキュメント] def add(self, X=None, t=None, Z=None): """ Adding variables of X, t, Z. Parameters ---------- X: numpy array N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of each search candidate. t: numpy array N dimensional array. The negative energy of each search candidate (value of the objective function to be optimized). Z Returns ------- """ self.add_X(X) self.add_t(t) self.add_Z(Z)
[ドキュメント] def delete_X(self, num_row): """ Deleting variables of X whose indexes are specified by num_row. Parameters ---------- num_row: numpy array Index array to be deleted. Returns ------- """ if self.X is not None: self.X = np.delete(self.X, num_row, 0)
[ドキュメント] def delete_t(self, num_row): """ Deleting variables of t whose indexes are specified by num_row. Parameters ---------- num_row: numpy array Index array to be deleted. Returns ------- """ if self.t is not None: self.t = np.delete(self.t, num_row)
[ドキュメント] def delete_Z(self, num_row): """ Deleting variables of Z whose indexes are specified by num_row. Parameters ---------- num_row: numpy array Index array to be deleted. Returns ------- """ if self.Z is not None: self.Z = np.delete(self.Z, num_row, 0)
[ドキュメント] def add_X(self, X=None): """ Adding variable X. If self.X is None, self.X is set as X. Parameters ---------- X: numpy array N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of each search candidate. Returns ------- """ if X is not None: if self.X is not None: self.X = np.vstack((self.X, X)) else: self.X = X
[ドキュメント] def add_t(self, t=None): """ Adding variable t. If self.t is None, self.t is set as t. Parameters ---------- t: numpy array N dimensional array. The negative energy of each search candidate (value of the objective function to be optimized). Returns ------- """ if not isinstance(t, np.ndarray): t = np.array([t]) if t is not None: if self.t is not None: self.t = np.hstack((self.t, t)) else: self.t = t
[ドキュメント] def add_Z(self, Z=None): """ Adding variable Z. If self.Z is None, self.Z is set as Z. Parameters ---------- Z Returns ------- """ if Z is not None: if self.Z is None: self.Z = Z else: self.Z = np.vstack((self.Z, Z))
[ドキュメント] def save(self, file_name): """ Saving variables X, t, Z to the file. Parameters ---------- file_name: str A file name for saving variables X, t, Z using numpy.savez_compressed. Returns ------- """ np.savez_compressed(file_name, X=self.X, t=self.t, Z=self.Z)
[ドキュメント] def load(self, file_name): """ Loading variables X, t, Z from the file. Parameters ---------- file_name: str A file name for loading variables X, t, Z using numpy.load. Returns ------- """ data = np.load(file_name, allow_pickle=True) self.X = data["X"] self.t = data["t"] self.Z = data["Z"]