physbo.search.discrete_multi.policy module

class physbo.search.discrete_multi.policy.policy(test_X, num_objectives, comm=None, config=None, initial_data=None)[ソース]

ベースクラス: policy

Performing Bayesian optimization.

パラメータ:
  • training (physbo.variable) -- Training dataset.

  • max_num_probes (int) -- Maximum number of searching process by Bayesian optimization.

  • num_search_each_probe (int) -- Number of searching by Bayesian optimization at each process.

  • predictor (predictor object) -- Base class is defined in physbo.predictor. If None, blm_predictor is defined.

  • is_disp (bool) -- If true, process messages are outputted.

  • simulator (callable) -- Callable (function or object with __call__) Here, action is an integer which represents the index of the candidate.

  • score (str) -- The type of aquision funciton. TS (Thompson Sampling), EI (Expected Improvement) and PI (Probability of Improvement) are available.

  • interval (int) -- The interval number of learning the hyper parameter. If you set the negative value to interval, the hyper parameter learning is not performed. If you set zero to interval, the hyper parameter learning is performed only at the first step.

  • num_rand_basis (int) -- The number of basis function. If you choose 0, ordinary Gaussian process run.

戻り値:

history

戻り値の型:

history object (physbo.search.discrete.results.history)

get_post_fcov(xs)[ソース]

Calculate covariance of predictor (post distribution)

get_post_fmean(xs)[ソース]

Calculate mean value of predictor (post distribution)

get_score(mode, actions=None, xs=None, predictor_list=None, training_list=None, pareto=None, parallel=True, alpha=1)[ソース]

Calcualte score (acquisition function)

パラメータ:
  • mode (str) -- The type of aquisition funciton. TS, EI and PI are available. These functions are defined in score.py.

  • actions (array of int) -- actions to calculate score

  • xs (physbo.variable or np.ndarray) -- input parameters to calculate score

  • predictor (predictor object) -- predictor used to calculate score. If not given, self.predictor will be used.

  • training (physbo.variable) -- Training dataset. If not given, self.training will be used.

  • parallel (bool) -- Calculate scores in parallel by MPI (default: True)

  • alpha (float) -- Tuning parameter which is used if mode = TS. In TS, multi variation is tuned as np.random.multivariate_normal(mean, cov*alpha**2, size).

戻り値:

f -- Score defined in each mode.

戻り値の型:

float or list of float

例外:

RuntimeError -- If both actions and xs are given

メモ

When neither actions nor xs are given, scores for actions not yet searched will be calculated.

When parallel is True, it is assumed that the function receives the same input (actions or xs) for all the ranks. If you want to split the input array itself, set parallel be False and merge results by yourself.

load(file_history, file_training_list=None, file_predictor_list=None)[ソース]

Loading files about history, training and predictor.

パラメータ:
  • file_history (str) -- The name of the file that stores the information of the history.

  • file_training (str) -- The name of the file that stores the training dataset.

  • file_predictor (str) -- The name of the file that stores the predictor dataset.

load_predictor_list(file_name)[ソース]
load_training_list(file_name)[ソース]
new_data_list: List[variable | None]

Performing random search.

パラメータ:
  • max_num_probes (int) -- Maximum number of random search process.

  • num_search_each_probe (int) -- Number of search at each random search process.

  • simulator (callable) -- Callable (function or object with __call__) from action to t Here, action is an integer which represents the index of the candidate.

  • is_disp (bool) -- If true, process messages are outputted.

戻り値:

history

戻り値の型:

history object (physbo.search.discrete.results.history)

save(file_history, file_training_list=None, file_predictor_list=None)[ソース]

Saving history, training and predictor into the corresponding files.

パラメータ:
  • file_history (str) -- The name of the file that stores the information of the history.

  • file_training (str) -- The name of the file that stores the training dataset.

  • file_predictor (str) -- The name of the file that stores the predictor dataset.

save_predictor_list(file_name)[ソース]
save_training_list(file_name)[ソース]
write(action, t, X=None, time_total=None, time_update_predictor=None, time_get_action=None, time_run_simulator=None)[ソース]

Writing history (update history, not output to a file).

パラメータ:
  • action (numpy.ndarray) -- Indexes of actions.

  • t (numpy.ndarray) -- N dimensional array. The negative energy of each search candidate (value of the objective function to be optimized).

  • X (numpy.ndarray) -- N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of each search candidate.

  • time_total (numpy.ndarray) -- N dimenstional array. The total elapsed time in each step. If None (default), filled by 0.0.

  • time_update_predictor (numpy.ndarray) -- N dimenstional array. The elapsed time for updating predictor (e.g., learning hyperparemters) in each step. If None (default), filled by 0.0.

  • time_get_action (numpy.ndarray) -- N dimenstional array. The elapsed time for getting next action in each step. If None (default), filled by 0.0.

  • time_run_simulator (numpy.ndarray) -- N dimenstional array. The elapsed time for running the simulator in each step. If None (default), filled by 0.0.