# coding=utf-8
import numpy as np
import scipy.optimize
import six
[ドキュメント]class batch( object ):
    """
    basis class for batch learning
    """
    def __init__( self, gp, config ):
        """
        Parameters
        ----------
        gp : physbo.gp.core.model object
        config: physbo.misc.set_config object
        """
        self.gp = gp
        self.config = config
[ドキュメント]    def run( self, X, t ):
        """
        Performing optimization using the L-BFGS-B algorithm
        Parameters
        ----------
        X: numpy.ndarray
            N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
        t: numpy.ndarray
            N-dimensional vector that represents the corresponding negative energy of search candidates.
        Returns
        -------
        numpy.ndarray
            The solution of the optimization.
        """
        batch_size = self.config.learning.batch_size
        sub_X, sub_t = self.gp.sub_sampling( X, t, batch_size )
        if self.config.learning.num_init_params_search !=0:
            is_init_params_search = True
        else:
            is_init_params_search = False
        if is_init_params_search:
            params = self.init_params_search( sub_X, sub_t )
        else:
            params = np.copy( self.gp.params )
        params = self.one_run( params, sub_X, sub_t )
        return params 
[ドキュメント]    def one_run( self, params, X, t, max_iter = None ):
        """
        Parameters
        ----------
        params: numpy.ndarray
            Initial guess for optimization.
            Array of real elements of size (n,), where ‘n’ is the number of independent variables.
        X: numpy.ndarray
            N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
        t: numpy.ndarray
            N-dimensional vector that represents the corresponding negative energy of search candidates.
        max_iter: int
            Maximum number of iterations to perform.
        Returns
        -------
        numpy.ndarray
            The solution of the optimization.
        """
        #is_disp: Set to True to print convergence messages.
        is_disp = True
        if max_iter is None:
            is_disp = self.config.learning.is_disp
            max_iter = int(self.config.learning.max_iter)
        args = (X, t)
        bound = self.gp.get_params_bound()
        res = scipy.optimize.minimize( fun=self.gp.eval_marlik, args= args, \
                 
x0=params, method='L-BFGS-B', jac=self.gp.get_grad_marlik, \
                 
bounds = bound, options={'disp':is_disp,'maxiter':max_iter})
        return res.x 
[ドキュメント]    def init_params_search( self, X, t ):
        """
        Parameters
        ----------
        X: numpy.ndarray
            N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
        t: numpy.ndarray
            N-dimensional vector that represents the corresponding negative energy of search candidates.
        Returns
        -------
        numpy.ndarray
            The parameters which give the minimum marginal likelihood.
        """
        num_init_params_search = self.config.learning.num_init_params_search
        max_iter = int(self.config.learning.max_iter_init_params_search)
        min_params = np.zeros( self.gp.num_params )
        min_marlik = np.inf
        for i in xrange(num_init_params_search):
            params = self.gp.get_cand_params( X, t )
            params = self.one_run( params, X, t, max_iter )
            marlik = self.gp.eval_marlik( params, X, t )
            if min_marlik > marlik:
                min_marlik = marlik
                min_params = params
        #print 'minimum marginal likelihood = ', min_marlik
        return min_params  
[ドキュメント]class online( object ):
    """
    base class for online learning
    """
    def __init__( self, gp, config ):
        """
        Parameters
        ----------
        gp : model  (gp.core.model)
        config: set_config  (misc.set_config)
        """
        self.gp = gp
        self.config = config
        self.num_iter = 0
[ドキュメント]    def run( self, X, t ):
        """
        Run initial search and hyper parameter running.
        Parameters
        ----------
        X: numpy.ndarray
            N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
        t: numpy.ndarray
            N-dimensional vector that represents the corresponding negative energy of search candidates.
        Returns
        -------
        numpy.ndarray
            The solution of the optimization.
        """
        if self.config.learning.num_init_params_search != 0:
            is_init_params_search = True
        else:
            is_init_params_search = False
        if is_init_params_search:
            print 'Start the initial hyper parameter searching ...'
            params = self.init_params_search( X, t )
            print 'Done\n'
        else:
            params = np.copy( self.params )
        print 'Start the hyper parameter learning ...'
        params = self.one_run( params, X, t )
        print 'Done\n'
        return params 
[ドキュメント]    def one_run( self, params, X, t, max_epoch = None ):
        """
        Parameters
        ----------
        params: numpy.ndarray
            Parameters for optimization.
            Array of real elements of size (n,), where ‘n’ is the number of independent variables.
        X: numpy.ndarray
            N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
        t: numpy.ndarray
            N-dimensional vector that represents the corresponding negative energy of search candidates.
        max_epoch: int
            Maximum candidate epochs
        Returns
        -------
        numpy.ndarray
            The solution of the optimization.
        """
        num_data = X.shape[0]
        is_disp = False
        batch_size = self.config.learning.batch_size
        if batch_size > num_data:
            batch_size = num_data
        if max_epoch is None:
            max_epoch = self.config.learning.max_epoch
            is_disp = self.config.learning.is_disp
        num_disp = self.config.learning.num_disp
        eval_size = self.config.learning.eval_size
        eval_X, eval_t = self.gp.sub_sampling( X, t, eval_size )
        timing = xrange( 0, max_epoch, int( np.floor( max_epoch / num_disp ) ) )
        temp = 0
        for num_epoch in xrange( 0, max_epoch ):
            perm = np.random.permutation( num_data )
            if is_disp and temp < num_disp and num_epoch == timing[temp]:
                self.disp_marlik( params, eval_X, eval_t, num_epoch )
                temp += 1
            for n in six.moves.range( 0, num_data, batch_size ):
                tmp_index = perm[n:n + batch_size]
                if len(tmp_index) == batch_size:
                    self.num_iter += 1
                    subX = X[tmp_index,:]
                    subt = t[tmp_index]
                    params += self.get_one_update( params, subX, subt )
        if is_disp:
            self.disp_marlik( params, eval_X, eval_t, num_epoch + 1 )
        self.reset()
        return params 
[ドキュメント]    def disp_marlik( self, params, eval_X, eval_t, num_epoch = None ):
        """
        Displaying marginal likelihood
        Parameters
        ----------
        params: numpy.ndarray
            Parameters for optimization.
            Array of real elements of size (n,), where ‘n’ is the number of independent variables.
        eval_X: numpy.ndarray
            N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
        eval_t: numpy.ndarray
            N-dimensional vector that represents the corresponding negative energy of search candidates.
        num_epoch: int
            Number of epochs
        Returns
        -------
        """
        marlik = self.gp.eval_marlik( params, eval_X, eval_t )
        if num_epoch is not None:
            print num_epoch,
            print '-th epoch',
        print 'marginal likelihood', marlik 
[ドキュメント]    def init_params_search( self, X, t ):
        """
        Initial parameter searchs
        Parameters
        ----------
        X: numpy.ndarray
            N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
        t: numpy.ndarray
            N-dimensional vector that represents the corresponding negative energy of search candidates.
        Returns
        -------
        numpy.ndarray
            The parameter which gives the minimum likelihood.
        """
        num_init_params_search = self.config.learning.num_init_params_search
        is_disp = self.config.learning.is_disp
        max_epoch = self.config.learning.max_epoch_init_params_search
        eval_size = self.config.learning.eval_size
        eval_X, eval_t = self.gp.sub_sampling( X, t, eval_size )
        min_params = np.zeros( self.gp.num_params )
        min_marlik = np.inf
        for i in xrange(num_init_params_search):
            params = self.gp.get_cand_params( X, t )
            params = self.one_run( params, X, t, max_epoch )
            marlik = self.gp.eval_marlik( params, eval_X, eval_t )
            if min_marlik > marlik:
                min_marlik = marlik
                min_params = params
        #print 'minimum marginal likelihood = ', min_marlik
        return min_params 
[ドキュメント]    def get_one_update( self, params, X, t ):
        raise NotImplementedError  
[ドキュメント]class adam( online ):
    ''' default '''
    def __init__( self, gp, config ):
        """
        Parameters
        ----------
        gp : physbo.gp.core.model object
        config: physbo.misc.set_config object
        """
        super(adam, self).__init__( gp, config )
        self.alpha = self.config.learning.alpha
        self.beta = self.config.learning.beta
        self.gamma = self.config.learning.gamma
        self.epsilon = self.config.learning.epsilon
        self.m = np.zeros( self.gp.num_params )
        self.v = np.zeros( self.gp.num_params )
[ドキュメント]    def reset( self ):
        self.m = np.zeros( self.gp.num_params )
        self.v = np.zeros( self.gp.num_params )
        self.num_iter = 0 
[ドキュメント]    def get_one_update( self, params, X, t ):
        """
        Parameters
        ----------
        params: numpy.ndarray
            Parameters for optimization.
            Array of real elements of size (n,), where ‘n’ is the number of independent variables.
        X: numpy.ndarray
            N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
        t: numpy.ndarray
            N-dimensional vector that represents the corresponding negative energy of search candidates.
        Returns
        -------
        """
        grad = self.gp.get_grad_marlik( params, X, t )
        self.m = self.m * self.beta + grad * ( 1 - self.beta )
        self.v = self.v * self.gamma + grad**2 * ( 1 - self.gamma )
        hat_m = self.m / ( 1 - self.beta ** ( self.num_iter  ) )
        hat_v = self.v / ( 1 - self.gamma ** ( self.num_iter ) )
        return - self.alpha * hat_m / ( np.sqrt( hat_v ) + self.epsilon )