physbo.gp.core.learning module¶
- 
class 
physbo.gp.core.learning.adam(gp, config)[ソース]¶ ベースクラス:
physbo.gp.core.learning.onlinedefault
- 
get_one_update(params, X, t)[ソース]¶ パラメータ: - params (numpy.ndarray) -- Parameters for optimization. Array of real elements of size (n,), where ‘n’ is the number of independent variables.
 - X (numpy.ndarray) -- N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
 - t (numpy.ndarray) -- N-dimensional vector that represents the corresponding negative energy of search candidates.
 
- 
 
- 
class 
physbo.gp.core.learning.batch(gp, config)[ソース]¶ ベースクラス:
objectbasis class for batch learning
- 
init_params_search(X, t)[ソース]¶ パラメータ: - X (numpy.ndarray) -- N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
 - t (numpy.ndarray) -- N-dimensional vector that represents the corresponding negative energy of search candidates.
 
戻り値: The parameters which give the minimum marginal likelihood.
戻り値の型: numpy.ndarray
- 
one_run(params, X, t, max_iter=None)[ソース]¶ パラメータ: - params (numpy.ndarray) -- Initial guess for optimization. Array of real elements of size (n,), where ‘n’ is the number of independent variables.
 - X (numpy.ndarray) -- N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
 - t (numpy.ndarray) -- N-dimensional vector that represents the corresponding negative energy of search candidates.
 - max_iter (int) -- Maximum number of iterations to perform.
 
戻り値: The solution of the optimization.
戻り値の型: numpy.ndarray
- 
run(X, t)[ソース]¶ Performing optimization using the L-BFGS-B algorithm
パラメータ: - X (numpy.ndarray) -- N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
 - t (numpy.ndarray) -- N-dimensional vector that represents the corresponding negative energy of search candidates.
 
戻り値: The solution of the optimization.
戻り値の型: numpy.ndarray
- 
 
- 
class 
physbo.gp.core.learning.online(gp, config)[ソース]¶ ベースクラス:
objectbase class for online learning
- 
disp_marlik(params, eval_X, eval_t, num_epoch=None)[ソース]¶ Displaying marginal likelihood
パラメータ: - params (numpy.ndarray) -- Parameters for optimization. Array of real elements of size (n,), where ‘n’ is the number of independent variables.
 - eval_X (numpy.ndarray) -- N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
 - eval_t (numpy.ndarray) -- N-dimensional vector that represents the corresponding negative energy of search candidates.
 - num_epoch (int) -- Number of epochs
 
- 
init_params_search(X, t)[ソース]¶ Initial parameter searchs
パラメータ: - X (numpy.ndarray) -- N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
 - t (numpy.ndarray) -- N-dimensional vector that represents the corresponding negative energy of search candidates.
 
戻り値: The parameter which gives the minimum likelihood.
戻り値の型: numpy.ndarray
- 
one_run(params, X, t, max_epoch=None)[ソース]¶ パラメータ: - params (numpy.ndarray) -- Parameters for optimization. Array of real elements of size (n,), where ‘n’ is the number of independent variables.
 - X (numpy.ndarray) -- N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
 - t (numpy.ndarray) -- N-dimensional vector that represents the corresponding negative energy of search candidates.
 - max_epoch (int) -- Maximum candidate epochs
 
戻り値: The solution of the optimization.
戻り値の型: numpy.ndarray
- 
run(X, t)[ソース]¶ Run initial search and hyper parameter running.
パラメータ: - X (numpy.ndarray) -- N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
 - t (numpy.ndarray) -- N-dimensional vector that represents the corresponding negative energy of search candidates.
 
戻り値: The solution of the optimization.
戻り値の型: numpy.ndarray
-