physbo.gp.inf.exact module¶
-
physbo.gp.inf.exact.
eval_marlik
(gp, X, t, params=None)[source]¶ Evaluating marginal likelihood.
- Parameters
gp (physbo.gp.core.model) –
X (numpy.ndarray) – N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
t (numpy.ndarray) – N dimensional array. The negative energy of each search candidate (value of the objective function to be optimized).
params (numpy.ndarray) – Parameters.
- Returns
marlik – Marginal likelihood.
- Return type
float
-
physbo.gp.inf.exact.
get_grad_marlik
(gp, X, t, params=None)[source]¶ Evaluating gradiant of marginal likelihood.
- Parameters
gp (physbo.gp.core.model) –
X (numpy.ndarray) – N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
t (numpy.ndarray) – N dimensional array. The negative energy of each search candidate (value of the objective function to be optimized).
params (numpy.ndarray) – Parameters.
- Returns
grad_marlik – Gradiant of marginal likelihood.
- Return type
numpy.ndarray
-
physbo.gp.inf.exact.
get_post_fcov
(gp, X, Z, params=None, diag=True)[source]¶ Calculating the covariance of posterior
- Parameters
gp (physbo.gp.core.model) –
X (numpy.ndarray) – N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
Z (numpy.ndarray) – N x d dimensional matrix. Each row of Z denotes the d-dimensional feature vector of tests.
params (numpy.ndarray) – Parameters.
diag (bool) – If X is the diagonalization matrix, true.
- Returns
- Return type
numpy.ndarray
-
physbo.gp.inf.exact.
get_post_fmean
(gp, X, Z, params=None)[source]¶ Calculating the mean of posterior
- Parameters
gp (physbo.gp.core.model) –
X (numpy.ndarray) – N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
Z (numpy.ndarray) – N x d dimensional matrix. Each row of Z denotes the d-dimensional feature vector of tests.
params (numpy.ndarray) – Parameters.
- Returns
- Return type
numpy.ndarray
-
physbo.gp.inf.exact.
prepare
(gp, X, t, params=None)[source]¶ - Parameters
gp (physbo.gp.core.model) –
X (numpy.ndarray) – N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate.
t (numpy.ndarray) – N dimensional array. The negative energy of each search candidate (value of the objective function to be optimized).
params (numpy.ndarray) – Parameters.
- Returns
stats
- Return type
tupple