4.6. Output of DSQSS/DLA¶
4.6.1. Format¶
DSQSS/DLA generates the result of a simulation as a plain-text file. The first character stands for the meaning of the line.
- P <name> = <value>
- Parameters read from the input files. 
- R <name> = <mean> <error>
- Results of observables. - <mean>denotes the expected value and- <error>denotes the statistical error of- <mean>.
- I <text> = <value>
- Other information. 
- C <text>
- Comments. 
The following one is a result of an antiferromagnetic Heisenberg chain.
C This is DSQSS ver.v2.0.0
I N_PROC = 1
P D       =            1
P L       =            8
P BETA    =      10.0000000000000000
P NSET    =           10
P NPRE    =         1000
P NTHERM  =         1000
P NDECOR  =         1000
P NMCS    =         1000
P SEED    =    198212240
P NSEGMAX =        10000
P NVERMAX =        10000
P BETA    = 10.000000000000
P NTAU    =           10
P NCYC    =            7
P ALGFILE = algorithm.xml
P LATFILE = lattice.xml
P WVFILE = wv.xml
P DISPFILE  = disp.xml
P OUTFILE    = sample.log
P CFOUTFILE  = cf.dat
P SFOUTFILE  = sf.dat
P CKOUTFILE  = ck.dat
P SIMULATIONTIME   =     0.000000
R sign = 1.00000000e+00 0.00000000e+00
R anv = 3.03805000e+00 1.25395375e-02
R ene = -4.55991910e-01 1.20267537e-03
R spe = -1.76672204e-02 4.09064489e-02
R som = -1.76672204e-01 4.09064489e-01
R len = 1.20014021e+01 4.78403202e-02
R xmx = 3.00035053e-01 1.19600800e-03
R amzu = -2.00000000e-04 1.08972474e-04
R bmzu = -2.00000000e-04 1.08972474e-04
R smzu = 1.32382500e-03 1.40792745e-04
R xmzu = 1.32382500e-02 1.40792745e-03
R ds1 = -1.32954309e-03 7.87178338e-04
R wi2 = 2.31040000e+01 3.83762890e-01
R rhos = 1.44400000e-01 2.39851806e-03
R rhof = inf nan
R comp = 2.43165481e+35 1.71412709e+35
R amzs0 = -2.00000000e-04 1.08972474e-04
R bmzs0 = 1.65625000e-04 1.76161818e-05
R smzs0 = 1.32382500e-03 1.40792745e-04
R xmzs0 = 1.32382500e-02 1.40792745e-03
R amzs1 = -9.25000000e-04 4.02247160e-03
R bmzs1 = 1.09209375e-01 1.12051866e-03
R smzs1 = 8.72503175e-01 8.93939492e-03
R xmzs1 = 3.00500011e+00 2.99056535e-02
R time = 1.03679300e-07 1.22794234e-09
I [the maximum number of segments]          = 123
I [the maximum number of vertices]          = 66
I [the maximum number of reg. vertex info.] = 3
4.6.1.1. Notations¶
- \(N_s\)
- The number of sites. 
- \(Q(\vec{k})\)
- The Fourier transformation of an arbitrary operator on a site \(i\), \(Q_i\). - \(\displaystyle Q(\vec{k}) \equiv \frac{1}{\sqrt{N_s}} \sum_i^{N_s} Q_i e^{-i\vec{r}_i\cdot\vec{k}}\) 
- \(Q(\tau)\)
- An arbitrary operator at imaginary time \(\tau\). - \(\displaystyle Q(\tau) \equiv \exp\left[\tau \mathcal{H}\right] Q(\tau=0) \exp\left[-\tau \mathcal{H}\right]\) 
- \(\tilde{Q}\)
- The average of an arbitrary operator \(Q\) over the imaginary time, \(\displaystyle \frac{1}{\beta}\int_0^\beta \! \mathrm{d} \tau Q(\tau)\) 
- \(M^z\)
- The component of a local degree of freedom along with the quantized axis. For example, \(z\) component of the local spin operator \(S^z\) for spin systems and the number operator \(n\) for the Bose-Hubbard models. 
- \(M^\pm\)
- The ladder operator. \(M^{\pm} \equiv S^\pm\) for spin systems, and the creation/annihilation operators \(M^+ \equiv b^\dagger\) , \(M^- \equiv b\) for the Bose-Hubbard models. 
- \(M^x\)
- The off-diagonal order parameter. \(M^x \equiv (S^+ + S^-)/2\) for spin systems and \(M^x \equiv (b + b^\dagger)\) for the Bose-Hubbard models. 
- \(T\)
- The temperature. 
- \(\beta\)
- The inverse temperature. 
- \(h\)
- The conjugate field to the operator \(M^z\) . The longitudinal magnetic field for spin systems and the chemical potential for the Bose-Hubbard models. 
- \(\left\langle Q \right\rangle\)
- The expectation value of an arbitrary operator \(Q\) over the grand canonical ensemble. 
4.6.2. Main results¶
Main results are written in a file with the name specified by outfile keyword in the input parameter file.
- sign
- The sign of the weights. - \(\sum_i W_i / \sum_i |W_i\) 
- anv
- The mean number of the vertices. - \(\displaystyle \frac{\langle N_v \rangle}{N_s}\) 
- ene
- The energy density (energy per site) - \(\displaystyle \epsilon \equiv \frac{1}{N_s}\left(E_0 - T\langle N_v\rangle\right)\) 
- spe
- The specific heat - \(\displaystyle C_V \equiv \frac{\partial \epsilon}{\partial T}\) 
- som
- The ratio of the specific heat and the temperature. - \(\displaystyle \gamma \equiv \frac{C_V}{T} = \beta C_V\) 
- len
- The mean length of worm 
- xmx
- The transverse susceptibility 
- amzu
- The “magnetization” (uniform, \(\tau=0\)). - \(\left\langle m^z \right\rangle\) , where \(\displaystyle m^z \equiv \frac{1}{N_s} \sum_i^{N_s} M^z_i\) 
- bmzu
- The “magnetization” (uniform, average over \(\tau\)). \(\left\langle \tilde{m}^z \right\rangle\) . 
- smzu
- The structure factor (uniform). - \(\displaystyle S^{zz}(\vec{k}=0) \equiv \frac{1}{N_s} \sum_{i, j} e^{i \vec{k}\cdot(\vec{r}_i-\vec{r}_j)} \left[ \left\langle M^z_i M^z_j\right\rangle - \left\langle M_i^z \right\rangle \left\langle M_j^z \right\rangle \right] \Bigg|_{\vec{k}=0} = N_s \left[ \left\langle (m^z)^2\right\rangle - \left\langle m^z\right\rangle^2 \right]\) 
- xmzu
- The longitudinal susceptibility (uniform). - \(\displaystyle \chi^{zz}(\vec{k}=0, \omega=0) \equiv \frac{\partial \left\langle \tilde{m}^z \right\rangle}{\partial h} = \beta N_s\left[ \left\langle \left(\tilde{m}^z\right)^2\right\rangle - \left\langle \tilde{m}^z\right\rangle^2 \right]\) 
- amzsK
- The “magnetization” (“staggered”, \(\tau=0\)) - \(\left\langle m_s^z \right\rangle\) where \(\displaystyle m_K^z \equiv \frac{1}{N_s} \sum_i^{N_s} M_i^z \cos\left( \vec{k}\cdot\vec{r_i} \right)\) . - \(K\) is an index of wavevector \(k\) specified in the wavevector XML file. 
- bmzu
- The “magnetization” (“staggered”, average over \(\tau\)). \(\left\langle \tilde{m}_K^z \right\rangle\) . 
- smzs
- The structure factor (“staggered”). - \(\displaystyle S^{zz}(\vec{k}) = N_s \left[ \left\langle (m_K^z)^2 \right\rangle - \left\langle m_K^z \right\rangle^2 \right]\) 
- xmzs
- The longitudinal susceptibility (“staggered”). - \(\displaystyle \chi^{zz}(\vec{k}, \omega=0) = \beta N_s \left[\left\langle (\tilde{m}_K^z)^2 \right\rangle - \left\langle \tilde{m}_K^z \right\rangle^2 \right]\) 
- wi2
- The winding number. - \(\displaystyle W^2 = \sum_{d=1}^D L_d^2 \left\langle W_d^2 \right\rangle\) 
- rhos
- The superfluid density. - \(\displaystyle \rho_s = \frac{W^2}{2DV\beta}\) 
- rhof
- The superfluid fraction. - \(\displaystyle \frac{\rho_s}{\left\langle m^z \right\rangle}\) 
- comp
- The compressibility. - \(\displaystyle \frac{\chi^{zz}(\vec{k}=0,\omega=0)} {\left\langle \tilde{m}^z \right\rangle^2}\) 
- time
- The time in a Monte Carlo sweep (in seconds.) 
4.6.3. Structure factor output¶
The structure factor is written into a file with the name specified by sfoutfile keyword in the input file.
The structure factor is defined as the following:
Wave vector \(\vec{k}\) and imaginary time \(\tau\) are specified by the name C<k>t<t> as the following:
R C0t0 = 1.32500000e-03 1.40929454e-04
R C0t1 = 1.32500000e-03 1.40929454e-04
R C1t0 = 7.35281032e-02 3.18028565e-04
where <k> is an index of the wave vector specified by kindex (the last element of each RK tag) in the wavevector XML file
and <t> is an index of the discretized imaginary time.
4.6.4. Real space temperature Green’s function output¶
The real space temperature Green’s function is written into a file with the name specified by cfoutfile keyword in the input file.
The real space temperature Green’s function is defined as the following:
Displacement \(\vec{r}_{ij}\) and imaginary time \(\tau\) are specified by the name C<k>t<t> as the same way of structure factor,
where <k> is an index of the displacement specified by kind (the first element of each R tag) in the relative coordinate XML file,
and <t> is an index of the discretized imaginary time.
4.6.5. Momentum space temperature Green’s function output¶
The momentum space temperature Green’s function is written into a file with the name specified by ckoutfile keyword in the input file.
The momentum space temperature Green’s function is defined as the following:
Wave vector \(\vec{r}_{ij}\) and imaginary time \(\tau\) are specified by the name C<k>t<t> as the same way of structure factor,
where <k> is an index of the displacement specified by kind (the last element of each RK tag) in the wavevector XML file,
and <t> is an index of the discretized imaginary time.
