Tutorial¶
List of sample files¶
There are following tutorials in samples/Standard/
.
The Hubbard model on the two dimensional square lattice
(
samples/Standard/Hubbard/square/
)The Hubbard model on the two dimensional triangular lattice
(
samples/Standard/Hubbard/triangular/
)The one dimensional Kondo chain
(
samples/Standard/Kondo/chain/
)The one dimensional antiferromagnetic Heisenberg chain
(
samples/Standard/Spin/HeisenbergChain/HeisenbergChain/
)The antiferromagnetic Heisenberg model on the two dimensional square lattice
(
samples/Standard/Spin/HeisenbergSquare/
)The antiferromagnetic Heisenberg model on the two dimensional Kagome lattice
(
samples/Standard/Spin/Kagome/
)
We can perform these tutorials in the same way. In the following, the tutorial of the one dimensional antiferromagnetic Heisenberg chain is shown.
Heisenberg model¶
This tutorial should be performed in
sample/Standard/Spin/HeisenbergChain/.
This directory contains the following things:
The input file: StdFace.def
reference outputs: reference/
In this case, we treat the one dimensional antiferromagnetic Heisenberg chain which has a nearest neighbor spin coupling.
The input file is as follows:
L = 16
Lsub=4
model = "Spin"
lattice = "chain lattice"
J = 1.0
2Sz = 0
NMPtrans=1
In this tutorial, J and the number of sites are set to 1 (arbitrary unit) and 16 respectively.
Running¶
We execute the following command.
$ mpiexec -np number-of-processes Path/vmcdry.out -s StdFace.def
The MPI command depends on your system (such as mpiexec
, mpirun
,
mpijob
, poe
, etc.). Then, the calculation starts and the
following standard message is outputted in the terminal.
###### Standard Intarface Mode STARTS ######
Open Standard-Mode Inputfile StdFace.def
KEYWORD : l | VALUE : 16
KEYWORD : lsub | VALUE : 4
KEYWORD : model | VALUE : spin
KEYWORD : lattice | VALUE : chain
KEYWORD : j | VALUE : 1.0
KEYWORD : nmptrans | VALUE : 1
####### Parameter Summary #######
@ Lattice Size & Shape
L = 16
Lsub = 4
L = 16
W = 1
phase0 = 0.00000 ###### DEFAULT VALUE IS USED ######
@ Hamiltonian
2S = 1 ###### DEFAULT VALUE IS USED ######
h = 0.00000 ###### DEFAULT VALUE IS USED ######
Gamma = 0.00000 ###### DEFAULT VALUE IS USED ######
D = 0.00000 ###### DEFAULT VALUE IS USED ######
J0x = 1.00000
J0y = 1.00000
J0z = 1.00000
@ Numerical conditions
Lsub = 4
Wsub = 1
ioutputmode = 1 ###### DEFAULT VALUE IS USED ######
###### Print Expert input files ######
qptransidx.def is written.
filehead = zvo ###### DEFAULT VALUE IS USED ######
filehead = zqp ###### DEFAULT VALUE IS USED ######
NVMCCalMode = 0 ###### DEFAULT VALUE IS USED ######
NLanczosMode = 0 ###### DEFAULT VALUE IS USED ######
NDataIdxStart = 1 ###### DEFAULT VALUE IS USED ######
NDataQtySmp = 1 ###### DEFAULT VALUE IS USED ######
NSPGaussLeg = 8 ###### DEFAULT VALUE IS USED ######
NMPTrans = 1
NSROptItrStep = 1000 ###### DEFAULT VALUE IS USED ######
NSROptItrSmp = 100 ###### DEFAULT VALUE IS USED ######
NVMCWarmUp = 10 ###### DEFAULT VALUE IS USED ######
NVMCInterval = 1 ###### DEFAULT VALUE IS USED ######
NVMCSample = 1000 ###### DEFAULT VALUE IS USED ######
NExUpdatePath = 2
RndSeed = 123456789 ###### DEFAULT VALUE IS USED ######
NSplitSize = 1 ###### DEFAULT VALUE IS USED ######
NStore = 0 ###### DEFAULT VALUE IS USED ######
DSROptRedCut = 0.00100 ###### DEFAULT VALUE IS USED ######
DSROptStaDel = 0.02000 ###### DEFAULT VALUE IS USED ######
DSROptStepDt = 0.02000 ###### DEFAULT VALUE IS USED ######
NSPStot = 0 ###### DEFAULT VALUE IS USED ######
ComplexType = 0 ###### DEFAULT VALUE IS USED ######
locspn.def is written.
trans.def is written.
interall.def is written.
jastrowidx.def is written.
coulombintra.def is written.
coulombinter.def is written.
hund.def is written.
exchange.def is written.
orbitalidx.def is written.
gutzwilleridx.def is written.
namelist.def is written.
modpara.def is written.
greenone.def is written.
greentwo.def is written.
###### Input files are generated. ######
-----------
Start: Read *def files.
Read File namelist.def .
Read File 'modpara.def' for ModPara.
Read File 'locspn.def' for LocSpin.
Read File 'trans.def' for Trans.
Read File 'coulombintra.def' for CoulombIntra.
Read File 'coulombinter.def' for CoulombInter.
Read File 'hund.def' for Hund.
Read File 'exchange.def' for Exchange.
Read File 'gutzwilleridx.def' for Gutzwiller.
Read File 'jastrowidx.def' for Jastrow.
Read File 'orbitalidx.def' for Orbital.
Read File 'qptransidx.def' for TransSym.
Read File 'greenone.def' for OneBodyG.
Read File 'greentwo.def' for TwoBodyG.
End : Read *def files.
Start: Read parameters from *def files.
End : Read parameters from *def files.
Start: Set memories.
End : Set memories.
Start: Initialize parameters.
End : Initialize parameters.
Start: Initialize variables for quantum projection.
End : Initialize variables for quantum projection.
Start: Optimize VMC parameters.
End : Optimize VMC parameters.
-----------
In the beginning of this run, files describing the detail of considered Hamiltonian
locspin.def
trans.def
coulombinter.def
coulombintra.def
exchange.def
hund.def
namelist.def
modpara.def
and files for setting variational parameters
gutzwilleridx.def
jastrowidx.def
orbitalidx.def
qptransidx.def
and files specifying elements of correlation functions that will be calculated
greenone.def
greentwo.def
are generated. The details of these files are shown in Input files for Expert mode.
During the calculation, the following files are outputted in
output
directory:
zvo_SRinfo.dat
zvo_out_001.dat
zvo_time_001.dat
zvo_var_001.dat
zvo_CalcTimer.dat
In zvo_out_001.dat
, the following quantities are outputted at each
bins
By seeing these informations, the conversion of the calculation can be judged. By using gnuplot, we can check the evolution of \(\langle H \rangle\) as follows:
gnuplot> plot "zvo_out_001.dat" u 1
The details of these outputted files are shown in Output files.
Output results¶
After finishing calculation normally, the files for the energy, the
deviation, the optimized variational parameters and the time of
execution for each calculation steps are outputted in output/
directory. In the following, the outputted files are shown
gutzwiller_opt.dat
jastrow_opt.dat
orbital_opt.dat
zqp_opt.dat
ClacTimer.dat
The details of these outputted files are shown in Output files.
Calculation of Green functions¶
After changing the value of NVMCCalMode
from 0 to 1 in
modpara.def
file, we execute the following command. When we add
"zqp_opt.dat"
after "namelist.dat"
as a command-line argument as
follows, the calculation of Green functions is done by using the
optimized variational parameters.
$ Path/vmc.out -e namelist.def output/zqp_opt.dat
After the calculation finishes, the following files are outputted in
output/
directory.
zvo_cisajs_001.dat
zvo_cisajscktalt_001.dat
The details of these outputted files are shown in Output files.
Input files for Expert mode¶
In mVMC, the calculation is done by reading input files categorized by the following six parts.
List: Specify the kinds and names of input files.
Basic parameters: Specify the basic parameters.
Set Hamiltonian: Specify the Hamiltonian.
Set condition of variational parameters : Specify the variational parameters to be optimized.
Initial variational parameters: Specify the initial values of the variational parameters.
Output: Specify the components of one-body and two-body Green’s functions to be outputted.
The calculation for complex models can be done by directly making above input files. The details for each files are shown in Input files for Expert mode.
Fourier transformation of correlation functions¶
This package has a utility which performs the Fourier transformation of the correlation function and plots that function. For more details, please see HPhi/mVMC Fourier-Transformation utility.