physbo.search.discrete_unified._policy のソースコード

# SPDX-License-Identifier: MPL-2.0
# Copyright (C) 2020- The University of Tokyo
#
# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at https://mozilla.org/MPL/2.0/.

import numpy as np
import copy
import pickle as pickle
import time

from ._history import History
from .. import discrete
from .. import utility
from .. import score as search_score
from ...gp import Predictor as gp_predictor
from ...blm import Predictor as blm_predictor
from ...misc import SetConfig
from ..._variable import Variable, normalize_t


[ドキュメント] class Policy(discrete.Policy): """Multi objective Bayesian optimization with discrete search space by using unified objective function""" def __init__( self, test_X, num_objectives, comm=None, config=None, initial_data=None ): """ Initialize the Policy object Parameters ---------- test_X: numpy.ndarray The set of candidates. Each row vector represents the feature vector of each search candidate. num_objectives: int The number of objectives comm: MPI.Comm, optional MPI Communicator config: physbo.misc.SetConfig, optional initial_data: tuple[np.ndarray, np.ndarray], optional The initial training datasets. The first elements is the array of actions and the second is the array of value of objective functions """ self.num_objectives = num_objectives self.history = History(num_objectives=self.num_objectives) self.training = Variable() self.training_unified = None self.predictor = None self.test = self._make_variable_X(test_X) self.new_data = None self.actions = np.arange(0, test_X.shape[0]) if config is None: self.config = SetConfig() else: self.config = config if initial_data is not None: if len(initial_data) != 2: msg = "ERROR: initial_data should be 2-elements tuple or list (actions and objectives)" raise RuntimeError(msg) actions, fs = initial_data if fs.shape[1] != self.num_objectives: msg = "ERROR: initial_data[1].shape[1] != num_objectives" raise RuntimeError(msg) if len(actions) != fs.shape[0]: msg = "ERROR: len(initial_data[0]) != initial_data[1].shape[0]" raise RuntimeError(msg) self.write(actions, fs) self.actions = np.array(sorted(list(set(self.actions) - set(actions)))) if comm is None: self.mpicomm = None self.mpisize = 1 self.mpirank = 0 else: self.mpicomm = comm self.mpisize = comm.size self.mpirank = comm.rank self.actions = np.array_split(self.actions, self.mpisize)[self.mpirank]
[ドキュメント] def write( self, action, t, X=None, time_total=None, time_update_predictor=None, time_get_action=None, time_run_simulator=None, ): self.history.write( t, action, time_total=time_total, time_update_predictor=time_update_predictor, time_get_action=time_get_action, time_run_simulator=time_run_simulator, ) action = np.array(action) N = len(action) t = np.array(t) # Ensure t is 2D: shape (N, num_objectives) if t.ndim == 1: if N == 1: t = t.reshape(1, -1) else: raise ValueError(f"Number of actions is {N} > 1, but t is 1D array") assert action.shape[0] == t.shape[0], "The number of actions and t must be the same" assert t.shape[1] == self.num_objectives, "The number of objectives in t must be the same as num_objectives" # Determine X and Z (different for each objective) if X is None: X = self.test.X[action, :] Z = self.test.Z[:, action, :] if self.test.Z is not None else None else: Z = None if self.new_data is None: self.new_data = Variable(X=X, t=t, Z=Z) else: self.new_data.add(X=X, t=t, Z=Z) # Add to single training Variable with full 2D t matrix and (k, N, n) Z if self.training.X is None: self.training = Variable(X=X, t=t, Z=Z) else: self.training.add(X=X, t=t, Z=Z) # remove action from candidates if exists if len(self.actions) > 0: local_index = np.searchsorted(self.actions, action) local_index = local_index[ np.take(self.actions, local_index, mode="clip") == action ] self.actions = self._delete_actions(local_index)
def _get_actions(self, mode, N, K, alpha): f = self.get_score(mode=mode, alpha=alpha, parallel=False) champion, local_champion, local_index = self._find_champion(f) if champion == -1: return np.zeros(0, dtype=int) if champion == local_champion: self.actions = self._delete_actions(local_index) chosen_actions = [champion] for n in range(1, N): f = self._get_marginal_score(mode, chosen_actions[0:n], K, alpha) champion, local_champion, local_index = self._find_champion(f) if champion == -1: break if champion == local_champion: self.actions = self._delete_actions(local_index) chosen_actions.append(champion) return np.array(chosen_actions)
[ドキュメント] def get_post_fmean(self, xs): """ Calculate mean value of predictor (post distribution) Parameters ---------- xs: physbo.Variable or np.ndarray input parameters to calculate mean value shape is (num_points, num_parameters) Returns ------- fmean: numpy.ndarray Mean value of the post distribution. Returned shape is (num_points). """ X = self._make_variable_X(xs) if self.predictor is None: self._warn_no_predictor("get_post_fmean()") predictor = gp_predictor(self.config) predictor.fit(self.training_unified, 0, comm=self.mpicomm) predictor.prepare(self.training_unified) return predictor.get_post_fmean(self.training_unified, X) else: self._update_predictor() return self.predictor.get_post_fmean(self.training_unified, X)
[ドキュメント] def get_post_fcov(self, xs, diag=True): """ Calculate covariance of predictor (post distribution) Parameters ---------- xs: physbo.Variable or np.ndarray input parameters to calculate covariance shape is (num_points, num_parameters) diag: bool If true, only variances (diagonal elements) are returned. Returns ------- fcov: numpy.ndarray Covariance matrix of the post distribution. Returned shape is (num_points) if diag=true, (num_points, num_points) if diag=false. """ X = self._make_variable_X(xs) if self.predictor is None: self._warn_no_predictor("get_post_fcov()") predictor = gp_predictor(self.config) predictor.fit(self.training_unified, 0, comm=self.mpicomm) predictor.prepare(self.training_unified) return predictor.get_post_fcov(self.training_unified, X, diag) else: self._update_predictor() return self.predictor.get_post_fcov(self.training_unified, X, diag)
[ドキュメント] def get_score( self, mode, *, actions=None, xs=None, predictor=None, training=None, parallel=True, alpha=1, ): """ Calculate score (acquisition function) Parameters ---------- mode: str The type of acquisition funciton. TS, EI and PI are available. These functions are defined in score.py. actions: array of int actions to calculate score xs: physbo.Variable or np.ndarray input parameters to calculate score predictor: predictor object predictor used to calculate score. If not given, self.predictor will be used. training:physbo.Variable Training dataset. If not given, self.training will be used. parallel: bool Calculate scores in parallel by MPI (default: True) alpha: float Tuning parameter which is used if mode = TS. In TS, multi variation is tuned as np.random.multivariate_normal(mean, cov*alpha**2, size). Returns ------- f: float or list of float Score defined in each mode. Raises ------ RuntimeError If both *actions* and *xs* are given Notes ----- When neither *actions* nor *xs* are given, scores for actions not yet searched will be calculated. When *parallel* is True, it is assumed that the function receives the same input (*actions* or *xs*) for all the ranks. If you want to split the input array itself, set *parallel* be False and merge results by yourself. """ if training is None: training = self.training_unified if training.X is None or training.X.shape[0] == 0: msg = "ERROR: No training data is registered." raise RuntimeError(msg) if predictor is None: if self.predictor is None: self._warn_no_predictor("get_score()") predictor = gp_predictor(self.config) predictor.fit(training, 0, comm=self.mpicomm) predictor.prepare(training) else: self._update_predictor() predictor = self.predictor if xs is not None: if actions is not None: raise RuntimeError("ERROR: both actions and xs are given") test = self._make_variable_X(xs) if parallel and self.mpisize > 1: actions = np.array_split(np.arange(test.X.shape[0]), self.mpisize) test = test.get_subset(actions[self.mpirank]) else: if actions is None: actions = self.actions else: if isinstance(actions, int): actions = [actions] if parallel and self.mpisize > 1: actions = np.array_split(actions, self.mpisize)[self.mpirank] test = self.test.get_subset(actions) f = search_score.score( mode, predictor=predictor, training=training, test=test, alpha=alpha ) if parallel and self.mpisize > 1: fs = self.mpicomm.allgather(f) f = np.hstack(fs) return f
[ドキュメント] def get_permutation_importance(self, n_perm: int, split_features_parallel=False): """ Calculating permutation importance of model Parameters ========== n_perm: int number of permutations split_features_parallel: bool If true, split features in parallel. Returns ======= importance_mean: numpy.ndarray importance_mean importance_std: numpy.ndarray importance_std """ if self.predictor is None: self._warn_no_predictor("get_permutation_importance()") predictor = gp_predictor(self.config) predictor.fit(self.training_unified, 0) predictor.prepare(self.training_unified) return predictor.get_permutation_importance( self.training_unified, n_perm, comm=self.mpicomm, split_features_parallel=split_features_parallel, ) else: self._update_predictor() return self.predictor.get_permutation_importance( self.training_unified, n_perm, comm=self.mpicomm, split_features_parallel=split_features_parallel, )
def _get_marginal_score(self, mode, chosen_actions, K, alpha): """ Getting marginal scores. Parameters ---------- mode: str The type of acquisition function. TS (Thompson Sampling), EI (Expected Improvement) and PI (Probability of Improvement) are available. These functions are defined in score.py. chosen_actions: numpy.ndarray Array of selected actions. K: int The number of samples for evaluating score. alpha: float not used. Returns ------- f: list N dimensional scores (score is defined in each mode) """ f = np.zeros((K, len(self.actions)), dtype=float) # draw K samples of the values of objective function of chosen actions new_test_local = self.test.get_subset(chosen_actions) virtual_t_local = self.predictor.get_predict_samples( self.training_unified, new_test_local, K ) if self.mpisize == 1: new_test = new_test_local virtual_t = virtual_t_local else: new_test = Variable() for nt in self.mpicomm.allgather(new_test_local): new_test.add(X=nt.X, t=nt.t, Z=nt.Z) virtual_t = np.concatenate(self.mpicomm.allgather(virtual_t_local), axis=1) # virtual_t = self.predictor.get_predict_samples(self.training, new_test, K) for k in range(K): predictor = copy.deepcopy(self.predictor) train = copy.deepcopy(self.training_unified) virtual_train = new_test # Normalize virtual_t[k, :] to (N, 1) shape virtual_train.t = normalize_t(virtual_t[k, :], k=1) if virtual_train.Z is None: train.add(virtual_train.X, virtual_train.t) else: train.add(virtual_train.X, virtual_train.t, virtual_train.Z) predictor.update(train, virtual_train) f[k, :] = self.get_score( mode, predictor=predictor, training=train, parallel=False ) return np.mean(f, axis=0)
[ドキュメント] def save(self, file_history, file_training=None, file_predictor=None): """ Saving history, training and predictor into the corresponding files. Parameters ---------- file_history: str The name of the file that stores the information of the history. file_training: str The name of the file that stores the training dataset. file_predictor: str The name of the file that stores the predictor dataset. Returns ------- """ if self.mpirank == 0: self.history.save(file_history) if file_training is not None: self.training.save(file_training) if file_predictor is not None: with open(file_predictor, "wb") as f: pickle.dump(self.predictor, f)
[ドキュメント] def load(self, file_history, file_training=None, file_predictor=None): """ Loading files about history, training and predictor. Parameters ---------- file_history: str The name of the file that stores the information of the history. file_training: str The name of the file that stores the training dataset. file_predictor: str The name of the file that stores the predictor dataset. Returns ------- """ self.history.load(file_history) if file_training is None: N = self.history.total_num_search X = self.test.X[self.history.chosen_actions[0:N], :] t = self.history.fx[0:N] self.training = Variable(X=X, t=t) else: self.training = Variable() self.training.load(file_training) if file_predictor is not None: with open(file_predictor, "rb") as f: self.predictor = pickle.load(f) N = self.history.total_num_search visited = self.history.chosen_actions[:N] local_index = np.searchsorted(self.actions, visited) local_index = local_index[ np.take(self.actions, local_index, mode="clip") == visited ] self.actions = self._delete_actions(local_index)
def _learn_hyperparameter(self, num_rand_basis): self.training_unified = self._unify_training(self.training) self.predictor.fit( self.training_unified, num_rand_basis, comm=self.mpicomm ) self.predictor.prepare(self.training_unified) Z = self.predictor.get_basis(self.training_unified.X) if Z is not None: self.training_unified.Z = Z[np.newaxis, :, :] self.new_data = None def _initialize_predictor(self, is_rand_expans): if is_rand_expans: self.predictor = blm_predictor(self.config) else: self.predictor = gp_predictor(self.config) def _update_predictor(self): if self.new_data is not None: self.training_unified = self._unify_training(self.training) N = self.training_unified.t.shape[0] n = self.new_data.t.shape[0] new_data_unified = self.training_unified.get_subset(np.arange(N - n, N)) assert np.allclose(new_data_unified.X, self.new_data.X) self.predictor.update(self.training_unified, new_data_unified) self.new_data = None def _unify_training(self, training: Variable) -> Variable: """ Wrapper of the unify_method function """ t_unified = self.unify_method(training.t) return Variable(X=training.X, t=t_unified.reshape(-1, 1))
def _run_simulator(simulator, action, comm=None): if comm is None: return simulator(action) if comm.rank == 0: t = simulator(action) else: t = 0.0 return comm.bcast(t, root=0)