Source code for physbo.gp.core.model

import numpy as np

from physbo import blm
from physbo.gp import inf
from physbo.gp.core import learning
from physbo.gp.core.prior import prior


[docs]class model: def __init__(self, lik, mean, cov, inf="exact"): """ Parameters ---------- lik mean cov inf """ self.lik = lik self.prior = prior(mean=mean, cov=cov) self.inf = inf self.num_params = self.lik.num_params + self.prior.num_params self.params = self.cat_params(self.lik.params, self.prior.params) self.stats = ()
[docs] def cat_params(self, lik_params, prior_params): """ Concatinate the likelihood and prior parameters Parameters ---------- lik_params: numpy.ndarray Parameters for likelihood prior_params: numpy.ndarray Parameters for prior Returns ------- params: numpy.ndarray parameters about likelihood and prior """ params = np.append(lik_params, prior_params) return params
[docs] def decomp_params(self, params=None): """ decomposing the parameters to those of likelifood and priors Parameters ---------- params: numpy.ndarray parameters Returns ------- lik_params: numpy.ndarray prior_params: numpy.ndarray """ if params is None: params = np.copy(self.params) lik_params = params[0 : self.lik.num_params] prior_params = params[self.lik.num_params :] return lik_params, prior_params
[docs] def set_params(self, params): """ Setting parameters Parameters ---------- params: numpy.ndarray Parameters. """ self.params = params lik_params, prior_params = self.decomp_params(params) self.lik.set_params(lik_params) self.prior.set_params(prior_params)
[docs] def sub_sampling(self, X, t, N): """ Make subset for sampling Parameters ---------- X: numpy.ndarray Each row of X denotes the d-dimensional feature vector of search candidate. t: numpy.ndarray The negative energy of each search candidate (value of the objective function to be optimized). N: int Total number of data in subset Returns ------- subX: numpy.ndarray subt: numpy.ndarray """ num_data = X.shape[0] if N is not None and N < num_data: index = np.random.permutation(num_data) subX = X[index[0:N], :] subt = t[index[0:N]] else: subX = X subt = t return subX, subt
[docs] def export_blm(self, num_basis): """ Exporting the blm(Baysean linear model) predictor Parameters ---------- num_basis: int Total number of basis Returns ------- physbo.blm.core.model """ if not hasattr(self.prior.cov, "rand_expans"): raise ValueError("The kernel must be.") basis_params = self.prior.cov.rand_expans(num_basis) basis = blm.basis.fourier(basis_params) prior = blm.prior.gauss(num_basis) lik = blm.lik.gauss( blm.lik.linear(basis, bias=self.prior.get_mean(1)), blm.lik.cov(self.lik.params), ) blr = blm.model(lik, prior) return blr
[docs] def eval_marlik(self, params, X, t, N=None): """ Evaluating marginal likelihood. Parameters ---------- params: numpy.ndarray Parameters. X: numpy.ndarray N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate. t: numpy.ndarray N dimensional array. The negative energy of each search candidate (value of the objective function to be optimized). N: int Total number of subset data (if not specified, all dataset is used) Returns ------- marlik: float Marginal likelihood. """ subX, subt = self.sub_sampling(X, t, N) if self.inf == "exact": marlik = inf.exact.eval_marlik(self, subX, subt, params=params) else: pass return marlik
[docs] def get_grad_marlik(self, params, X, t, N=None): """ Evaluating gradiant of marginal likelihood. Parameters ---------- params: numpy.ndarray Parameters. X: numpy.ndarray N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate. t: numpy.ndarray N dimensional array. The negative energy of each search candidate (value of the objective function to be optimized). N: int Total number of subset data (if not specified, all dataset is used) Returns ------- grad_marlik: numpy.ndarray Gradiant of marginal likelihood. """ subX, subt = self.sub_sampling(X, t, N) if self.inf == "exact": grad_marlik = inf.exact.get_grad_marlik(self, subX, subt, params=params) return grad_marlik
[docs] def get_params_bound(self): """ Getting boundary of the parameters. Returns ------- bound: list An array with the tuple (min_params, max_params). """ if self.lik.num_params != 0: bound = self.lik.get_params_bound() if self.prior.mean.num_params != 0: bound.extend(self.prior.mean.get_params_bound()) if self.prior.cov.num_params != 0: bound.extend(self.prior.cov.get_params_bound()) return bound
[docs] def prepare(self, X, t, params=None): """ Parameters ---------- X: numpy.ndarray N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate. t: numpy.ndarray N dimensional array. The negative energy of each search candidate (value of the objective function to be optimized). params: numpy.ndarray Parameters. """ if params is None: params = np.copy(self.params) if self.inf == "exact": self.stats = inf.exact.prepare(self, X, t, params) else: pass
[docs] def get_post_fmean(self, X, Z, params=None): """ Calculating posterior mean of model (function) Parameters ========== X: numpy.ndarray inputs Z: numpy.ndarray feature maps params: numpy.ndarray Parameters See also ======== physbo.gp.inf.exact.get_post_fmean """ if params is None: params = np.copy(self.params) if self.inf == "exact": post_fmu = inf.exact.get_post_fmean(self, X, Z, params) return post_fmu
[docs] def get_post_fcov(self, X, Z, params=None, diag=True): """ Calculating posterior covariance matrix of model (function) Parameters ---------- X: numpy.ndarray inputs Z: numpy.ndarray feature maps params: numpy.ndarray Parameters diag: bool If X is the diagonalization matrix, true. Returns ------- physbo.gp.inf.exact.get_post_fcov """ if params is None: params = np.copy(self.params) if self.inf == "exact": post_fcov = inf.exact.get_post_fcov(self, X, Z, params, diag) return post_fcov
[docs] def post_sampling(self, X, Z, params=None, N=1, alpha=1): """ draws samples of mean value of model Parameters ========== X: numpy.ndarray inputs Z: numpy.ndarray feature maps N: int number of samples (default: 1) alpha: float noise for sampling source Returns ======= numpy.ndarray """ if params is None: params = np.copy(self.params) fmean = self.get_post_fmean(X, Z, params=None) fcov = self.get_post_fcov(X, Z, params=None, diag=False) return np.random.multivariate_normal(fmean, fcov * alpha**2, N)
[docs] def predict_sampling(self, X, Z, params=None, N=1): """ Parameters ---------- X: numpy.ndarray training datasets Z: numpy.ndarray input for sampling objective values params: numpy.ndarray Parameters N: int number of samples (default: 1) Returns ------- numpy.ndarray """ if params is None: params = np.copy(self.params) ndata = Z.shape[0] if ndata == 0: return np.zeros((N, 0)) fmean = self.get_post_fmean(X, Z, params=None) fcov = self.get_post_fcov(X, Z, params=None, diag=False) + self.lik.get_cov( ndata ) return np.random.multivariate_normal(fmean, fcov, N)
[docs] def print_params(self): """ Printing parameters """ print("\n") if self.lik.num_params != 0: print("likelihood parameter = ", self.lik.params) if self.prior.mean.num_params != 0: print("mean parameter in GP prior: ", self.prior.mean.params) print("covariance parameter in GP prior: ", self.prior.cov.params) print("\n")
[docs] def get_cand_params(self, X, t): """ Getting candidate for parameters Parameters ---------- X: numpy.ndarray N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate. t: numpy.ndarray N dimensional array. The negative energy of each search candidate (value of the objective function to be optimized). Returns ------- params: numpy.ndarray Parameters """ params = np.zeros(self.num_params) if self.lik.num_params != 0: params[0 : self.lik.num_params] = self.lik.get_cand_params(t) temp = self.lik.num_params if self.prior.mean.num_params != 0: params[ temp : temp + self.prior.mean.num_params ] = self.prior.mean.get_cand_params(t) temp += self.prior.mean.num_params if self.prior.cov.num_params != 0: params[temp:] = self.prior.cov.get_cand_params(X, t) return params
[docs] def fit(self, X, t, config): """ Fitting function (update parameters) Parameters ---------- X: numpy.ndarray N x d dimensional matrix. Each row of X denotes the d-dimensional feature vector of search candidate. t: numpy.ndarray N dimensional array. The negative energy of each search candidate (value of the objective function to be optimized). config: physbo.misc.set_config object """ method = config.learning.method if method == "adam": adam = learning.adam(self, config) params = adam.run(X, t) if method in ("bfgs", "batch"): bfgs = learning.batch(self, config) params = bfgs.run(X, t) self.set_params(params)